
ACNAUX Functions
Acnet utility support

Mar 6, 1992

Introduction
The Acnet standard for task-task communications is widely used in accelerator control

systems at Fermilab. The Acnet task called ACNAUX is designed to support a set of utility
functions which can aid diagnosis of Acnet network nodes in a standard way, as it is
independent of the cpu and operating system used by each node. Each node supports the
Acnet header standard; through ACNAUX each node supports some common diagnostic utility
functions. This note describes the support for ACNAUX in the Local Station nodes. The official
document of the standard is described elsewhere by Glenn Johnson.

Each function is specified by the lo byte of the first (or only) word following the Acnet header
of the request message. In some cases the hi byte of this word may be used as a sub-function
code. All functions are one-shot requests.

ACNAUX implementation
In the local station, ACNAUX is implemented by a local application called AAUX. It uses

the generic protocol support available via OpenPro to receive notification about network
messages directed to it. This same support is also used by FTPMAN, GATE, and HUMBUG. It
permits more rapid response than would be achieved using 15 Hz polling of the message
queue. Two of the available parameter words are used to pass a ptr to the message reference
block that itself includes a ptr to the received request message. The AcReq Task calls the local
application when it receives a message destined for the local application whose network task
name is found in the protocol table, filled by OpenPro calls.

NOOP function 0
This serves as a "ping" facility. It determines if a node will respond to an Acnet header

request message. A status-only reply is returned. A Vax program called ANPING can be run
from a terminal to exercise this function. It includes the time for the response in 10 msec
resolution. A local station which is not busy can return such a response in 4 msec, which is
near the limit of the token ring chipset that interfaces to the token ring network.

GTTASK function 4
Returns a list of the currently-connected network task names, followed by a byte array

of the associated task-id's. The AAUX local application examines the NETCT table contents to
find this info. For each entry whose queue id is nonzero, the task name and id is recorded.
Because the format is specified in Vax normal byte order, it is necessary to swap bytes for all
words in the reply.

The byte order of task names used in the local stations was designed to conform to the notion
that a task name can be a 4-byte character array. But in the acnet system, many task names
are in 6-character RAD-50 format, which also takes 4 bytes (two 3-character words). (Recall
for the following argument that the token ring hardware interface on the Vax swaps every
byte, in order to make it such that 2-byte integer words transfer between Vax and token ring
stations that use a "big-endian" architecture without software byte swapping.) To make it
possible for both the Vax and the local station to use 4-character ascii names, the bytes of the
destination task name field of an acnet header are swapped upon reception by the ANet task
in the local station. ANet then searches for a match with the current connected task entries in
the NETCT network connection table to dispatch the received message to the proper message
queue. When a message is transmitted by the local station, these bytes are swapped before it
gets passed to the chipset so that the Vax receives them in natural order.

As a result of this logic of preserving 4-char ascii task name communication, the 6-character
RAD-50 names must be kept in byte-swapped form in the NETCT table. Since these names are
treated as magic constants by local station software, this is easy to do. As an example, the
task name ACNAUX in RAD-50 form is 0x06C609A0 (ACN=06C6, AUX=09A0); but for local
station software, it should be specified as 0xC606A009, and it appears this way in the NETCT
table entry.

Since there can be a mix of 4-character and 6-character formats, it requires some special logic
to convert the names to ascii for display. All 4-character task names are composed of 4 capital
letters in ascii. If a given task name fits this pattern, then it may be presumed a 4-character
form; otherwise, it should be assumed to be of the 6-character RAD-50 form.

RAD-50 definition
This encoding of a restricted set of characters permits squeezing 3 characters of

information into one 16-bit word. It can be considered simply as a base-40 number system,
whose coding scheme is as follows:

0 space 28 .

1-26 A-Z 29 (unused)

27 $ 30-39 0-9

To convert `XYZ' into RAD-50, the result is (25*40 + 26)*40 + 27 = 41067 = 0xA06B.

GTTRIO function 8
Returns token ring chipset I/O error statistics. The token ring chipset maintains an

error log that is a set of nine 8-bit counters. A special command can be issued to the chipset to
interrogate these counters. An extra motivation for doing so is provided by the fact that for
some error conditions, when the error count reaches 255, or 0xFF, the chipset removes itself
from the network. This means that a node on token ring should plan to read this error log on
some periodic basis. The local station software does this, using a default period of about 20
minutes, currently. The counts are accumulated into a corresponding set of 16-bit counts,
which allow monitoring the health of the network. This GTTRIO function returns the value of
these word counts, along with the time interval over which they were accumulated. The
names of the error conditions are:

Line
Each frame that is received or repeated for a valid FCS or Manchester code violation. If

one is detected, the EDI (Error Detected Indicator) bit is set to "1" in the frame or token's
ending delimiter. If the received EDI is "1", this Line error count is incremented; if the EDI is a
"1", it is not incremented.

ARI/FCI
This indicates that the upstream node chipset is unable to set its ARI/FCI bits in a

frame it has received. (The details of this seem rather obscure to this writer.)

Burst
The chipset has detected the absence of transitions for five half-bit times between

SDEL and EDEL.

ACNAUX Functions p. 2

Receive congestion
The chipset recognizes a frame addressed to its specific address, but it has no buffer

space available to receive the frame.

Lost frame
When in transmit mode, the chipset fails to receive the end of the frame it transmitted.

Frame copied
When in receive/repeat mode, the chipset recognizes a frame that is addressed to its

specific address, but the ARI bits are nonzero, indicating a possible duplicate address. (The
bridge currently causes many of these.)

Token
The Active Monitor detects a frame with the MONITOR COUNT bit set, no token of frame

received within a 10 msec window, or a code violation in a starting delimiter/token
sequence.

DMA parity or DMA Bus
Maybe something wrong with the token ring interface board itself.

GTPKTS function 9
Returns network message packet processing statistics to permit assessment of a node's

network I/O activity. The time since the network statistics were cleared is given along with a
count of message packets processed either in or out. For the local station, several resident
diagnostic counters are monitored to collect these statistics. The time period is the time since
the AAUX local application was last initialized, which would normally be at system reset time;
however, if AAUX is updated to a new version, upon download of a new version, the old
version is terminated and the new version is initialized, so the statistics will begin again. The
implementation uses the cycle counter which is a longword that begins at zero at system reset
time and is incremented for every 15 Hz cycle. If a station is running at the backup 12.5 Hz
rate, this value is not corrected for it. When AAUX is initialized, it captures the present reading
of this cycle counter. To reply to a GTPKTS function request, the current cycle counter - the
earlier one is returned.

The count of packets processed is fairly involved. The local station supports network
communications with several protocols. The Classic data request/alarm protocol does not
use an Acnet header. The Accelerator protocols do use an Acnet header. Each family of
protocols must be considered separately.

The Classic protocol uses SAP 18. At present, there is no message counter accumulated for the
Classic protocol messages received, so a frame counter is monitored as an approximation. In
the SAP table, a word counter is incremented for each SAP 18 frame received. AAUX watches
this counter every cycle and notices changes in it to build a count of Classic frames received.
When a message count is added to the system logic, this code can be updated to use it.

All Acnet-header protocols use SAP 68. Each task name that is connected to the network is
recorded in the NETCT table, and a word counter is incremented for each message that is
received and dispatched by the ANet task. So AAUX monitors these counters for all 23 possible
entries in NETCT. For each entry that is active (queue id <> 0) the associated word counter is
monitored every cycle for evidence of counting. Increments are accumulated into the total
packet count.

ACNAUX Functions p. 3

All messages transmitted pass through the OUTPQ network output pointer queue. There is a
word in the OUTPQ header that is incremented for every message that has been completely
transmitted. This word is monitored every cycle and any increments noticed are accumulated
into the total packet count.

All in all, the total packet count is the sum of the number of Classic frames received (to be
replaced by a message count when available), the number of messages passed to the
associated message queue for each connected network task name, and the number of
messages completely transmitted to the network for any protocol.

Each Linac local station uses Arcnet communications for data acquisition with the SRMs
(Smart Rack Monitors), which usually number 4 or 5 on each Arcnet. This communication
protocol is Acnet-header based and is called locally "#4" to signify it was the 4th data request
protocol to be supported by the local station system software. This network activity is not
part of the token ring network activity; therefore, even though it represents network
processing activity in the local station, it was not included in the #packets reported in reply to
GTPKTS. If it were, it would typically add 75 packets per second for a station with 4 SRMs.
This includes 1 broadcast transmitted request and 4 replies per 15 Hz cycle.

Viewing the results of these functions
One program that makes use of the GTPKTS function are Vax console page D31, which

polls a large sequence of nodes and reports the total time value and the number of network
packets processed per second between polls. Any node that does not support the GTPKTS
function is sent a NOOP function instead, in which case only an indication of the success of the
reply is reported.

Another program that exercises this function is called PACKETS, accessible from a VT100
terminal or emulator. It shows the network activity relating to 4 nodes, with the last one
initially set to ADCALC. This last one can be changed to a user selected node name by typing
"!" to get the prompt message that asks for the node name, such as LIN611, for example.
When a user-selected name is entered, the GTTASK function is issued to request the task list,
displayed in a separate box. Each node is polled approximately every 4 seconds, and statistics
are displayed for the current packet rate, the minimum and maximum rates, and rates that
are averaged over several different time intervals.

The program that uses the GTTRIO function to list the error counters at a VT100 terminal is
called TRIO. It prompts for a node name and shows the current counts obtained via the
GTTRIO function and also the time over which the counts were accumulated. At this time, the
CLEAR and NOW and SET NEW PERIOD are not implemented, but they could be so in the future.

ACNAUX Functions p. 4

