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The BLMS local application currently computes long term beam losses for each of about 70 
BLMs for each Booster reset event. With 10 reset events, this is a total of about 700 "dose" 
accumulations. Each accumulation is assigned an analog channel that returns a single precision 
floating point value. The accumulation is summed over a period of time, updated several times 
during that period. (For example, the sums might reflect the last hour, updated every 5 
minutes.) We must add to this a breakdown of the beam losses throughout each Booster 
acceleration cycle in steps of one millisecond. This implies a total of 70*35*10 (= 24500) summed 
values. Within a single node, there may be typically 12 BLM signals, so that such a node has to 
deal with 4200 sums If the sums are 32-bit floating point values, 16800 bytes would be needed 
for a node to support 12 BLMs. But how can these values be most easily dealt with? This note is 
an attempt to reach a conclusion on some of the details.

Each BLM will have 35*10 values, with 35 points for each BLM for each reset event. This data 
should not have to be accessed frequently. Each set of millisecond single precision fl;oating 
point sums occupies 140 bytes; a complete set of sums for all clock events therefore requires 
1400 bytes. Imagine that we have a set of Acnet array devices. Shall there be one Acnet array 
device per BLM? The offset value might be used to select any set of the 350 sum values.

In addition to maintaining sums of losses, we also need to keep a set of 35 values for the beam 
charge signal that can be used for normalization purposes.

Finally, sums of the number of reset events should be maintained. This is only 10 sums, but they 
should be in floating point so that range is not a problem. Single precision floating point only 
maintains 6–7 digits of precision. At 15 Hz, one can count to a million in 66666 seconds, or 
somewhat less than a day. Do we need to maintain double precision floating point sums? If we 
don't, after about a week's time, the sums may no longer increment.

Single precision floating point is supported as a raw data type, but there is no current support 
for double precision floating point. Still, it may be possible to build a table of such data in 
memory, so that it could be accessed occasionally by a client application.

Every 15 Hz cycle, what does BLMS have to do to fulfill these requirements? For each BLM in 
the node, up to a maximum of 16, evaluate 35 differential loss values across the 35 ms 
acceleration cycle. Accumulate these values into the sums for that BLM for the current reset 
event. For the single signal of beam charge, accumulate its values (not differential) into sums 
according to the current reset event. Finally increment the counter for the current reset event.

A client that reads such sums will likely want to compute differences, in order to show what 
accumulations occurred during the previous minutes, say, or for any time interval. 

Conclusions:

Let the sums be maintained in double precision floating point. This means that there can be no 
overflow, such as might be the case with 32-bit integer accumulations, and there cannot be a 
loss of significance, as might be the case with single precision floating point. Each double 
occupies 8 bytes, so that using 10 possible events with 35 points, we need 2800 bytes per BLM. 
In a single node, we should not have to support more than 16 BLMs, and it will more likely be 
only 12 BLMs. The total space required would therefore be 2800*12 = 33600 bytes. Even if we 



allow for a full 16 BLMs, and an additional 2 clock events, and one more point (for a total loss), 
the total memory required would be 36*12*16 = 55296 bytes, or 2048 bytes shy of 56K bytes.

Since differences of these sums will always be used for interpretation of the beam loss data, it 
would be better if the sums are truly long term sums that are not normally reset at all. The sums 
may be archived using the Acnet datalogger, and one may want to compute sums over very 
long times; therefore, it would be convenient not to reset the sums. This raises the question of 
how to prevent it if the power goes off, or even if the IRM resets. The solution to this is to 
maintain the sums in nonvolatile memory. When BLMS starts, it knows that the sums are 
already active. When it exits, for whatever reason, perhaps to update the program, it knows that 
the sums will be retained.

Looking for a place to house these beam loss sums in nonvolatile memory, the ADESC table in an 
IRM is located at 420000–42FFFF, when configured for 1024 analog channels, as it always is. 
The TRUNK table is located at 43E000–43FFFF, allowing for the maximum of 8 trunks from 9–16. 
The loss accumulations can therefore be housed in the 56K bytes at 430000–43DFFF.

The extra 2048 bytes can be used for keeping the date and time of clearing the sums, and 
perhaps the sums of the various clock events for which losses were accumulated during the 
same period of time. For support of sums of 12 clock events, we need 12 doubles. These occupy 
12*8 = 96 bytes. The sums of the beam charge signal can be housed in the same way that an 
extra BLM can be supported. The only difference is that the beam charge readings should not be 
converted into loss units nor differenced for each millisecond. The beam charge information is 
presumably only available in one node, so that the beam loss summations in all nodes should be 
reset at the same time, along with the beam charge sums and the clock event sums.

For 36 doubles, we need 36*8 = 288 bytes. This is 0x120, a fairly even number. Using 12 clock 
events per BLM, we have 288*12 = 3456 bytes, or 0xD80. An Acnet device for each BLM would 
point to one such two-dimensioned array of 36*12 = 432 doubles. Using memory access to these 
values, the SSDN will have to use multiples of 0xD80 bytes offset from 0x430000.

BLM# Address
0 0x430000
1 0x430D80
2 0x431B00
3 0x432880
4 0x433600
5 0x434380
6 0x435100
7 0x435E80
8 0x436C00
9 0x437980
10 0x438700
11 0x439480
12 0x43A200
13 0x43AF80
14 0x43BD00
15 0x43CA80
end 0x43D800

As an example, an SSDN for the BLM #7  in node06C3 would be:
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1D12 06C3 0043 5E80

Listype 29 (0x1D) specifies memory word access via memory address. The offset flag is set to 
enable the use of the offset word to modify the acual address referenced. This is needed by an 
application to read a part of the 3456-byte structure that allows for 12 sets—one per clock 
event—of 36 double precision floating point sums.

The end leaves 2K bytes before 0x43E000, where the TRUNK table currently resides. In order to 
reach a specific clock event's millisecond loss measurements, use the following offsets.

Event Offset Offset/hex
11 0 0x000
12 288 0x120
13 576 0x240
14 864 0x360
15 1152 0x480
16 1440 0x5A0
17 1728 0x6C0
19 2016 0x7E0
1C 2304 0x900
1D 2592 0xA20
xx 2880 0xB40 yy 3168 0xC60
end 3456 0xD80

Using the above offsets with the SSDNs that apply for each BLM allows access to the long term 
double precisions beam loss sums for a given clock event. Note that an array element cannot be 
addressed on the parameter page because Acnet does not support 8-byte values.

When accumulating the beam losses for every millisecond, given that the digitization rate is 
12.5KHz, or 80 µs between each point, we must skip along every 12 or 13 digitized values, 
althernately, in order to average out to 1 ms sampling. If the loss difference between successive 
samplings is negative, assume zero loss for that millisecond.
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