
Booster BLMs
Local Application BLMS

Fri, Jul 14, 2000

Booster Beam Loss Monitors are supported by a local application called BLMS that
accumulates dose measurements from each BLM according to the Booster reset type of the
cycle on which the measurements are made. This note describes how it is done.

BLMS dose accumulations
Each 15 Hz cycle, a determination is made of which Booster cycle reset occurred at the

start of the cycle. The function HaveEvt is called for each possible Booster reset event number
until one is found whose bit is set in the clock events bit array maintained by the system. The
valid Booster reset events are the following:

11, 12, 13, 14, 15, 16, 17, 19, 1C, 1D

Separate accumulations are made for each reset type and for each BLM. With
accommodations for up to 16 BLMs in one node, using two 8-channel Swift digitizer
modules, there are 160 separate accumulations maintained using the above list of 10 valid
reset events. These accumulations are placed into the data pool covering a range of 160
consecutive analog channels—out of a typical total of 1024 allocated for each IRM node. If
only 12 BLMs are used, say, there are gaps of unused channels in the range of 160. These
gaps are reserved for additional sums in the case that more BLMs are added. If additional
Booster reset events are added, the total list will be longer than 160 channels, 16 channels
longer for each additional reset event.

The sums are measured over a selected period of time and are updated multiple times during
this period. For example, a period of 60 minutes may be used, so that the sums represent data
accumulated over the last hour. These hourly sums may be updated every 5 minutes, so that
12 sets of partial sums must be maintained in order to be able to update the long term sums
that often. Currently, a maximum of 16 updates are allowed per long term period. (This limit
can easily be increased if needed.)

The long term sums are cleared when the BLMS local application starts up. During the first
long term period, then, the sums might be observed to increase for each partial update. Once
the first long term period is over, the sums should follow the relative beam losses that the
BLMs measure, updated after every partial period. (If the ramping behavior during the first
long term period is undesirable, a modified scheme can be used without this effect.)

The behavior of the long term sums will be such that an unusual spike of beam loss will
influence the long term sum to the same extent for the entire long term period, after which its
influence is lost. In addition, one may have to wait for as long as a partial sum period before
the impact of a spike is seen on the long term sum.

Another scheme of maintaining a continuously-updated running sum may be used instead, if
desired, in which a spike would have a declining influence in the long term sum over time;
after the long term period, its influence would have dropped to 1/e (0.368) of its initial
influence. Whichever method is used, for tuning purposes, one would presumably use the
instantaneous beam loss measurements captured on a selected reset event of interest rather
than any long term summation.

Independent of which long term summation scheme is used, comparing beam loss between
different Booster resets must take into account how many of each reset event occurred during
the long term period. If the long term period is too short (as in the example shown used for

testing), an error of one reset event in the long term period may be significant. (The long term
period is based upon time, not, say, upon supercycles.)

Because of the wide range of potential beam loss occurring during one Booster acceleration
cycle, the BLM hardware signal is a log of the integrated beam loss measurement during the
33 ms Booster acceleration cycle. Because a log amplifier is used, an offset is applied on
purpose. (It’s hard to take the log of zero.) In dealing with these readings, it is desirable to
remove the offset. Since the BLM data comes into the IRM as a waveform, and recognizing
that the waveform is an integrated signal, the log value is converted to a loss (in units of
rads/sec) at the end of the acceleration cycle and at the start of the cycle before beam in
injected, and the difference of these two losses provides the values that are summed. The
conversion is done via table lookup, since all BLMs obey the same conversion formula:

rads/sec = 0.00721196*Exp(1.0057772*volts)

Separate sums are accumulated for each BLM on each 15 Hz cycle, according to the reset
event number of that cycle.

BLMS parameters

E LOCAL APPS 07/11/00 1434
NODE<06C3> NTRY< 5>/64 H<0508>
NAME=BLMS CNTR=95 DT= 0 MS
TITL"BOOSTER BEAM LOSS MONTRS"
SVAR=000417F0 07/10/00 1545
ENABLE B<00B0>*BLMS ENABLE
INIT INX <0001>
FINL INX <01B8>
BLM C<0200> BLMTS0 0 vlts
#BLMS <0002>
PART #CY <0100>
#PARTS <0006>
SUMS C<0210> 0
 <0000>
 <0000>

Following the enable bit parameter that all local application instances use, the two indexes
specify the zero-based word index values that cover the Booster acceleration cycle. If the
Swift digitizer operates at 12.5 KHz to capture the waveforms, beginning at the reset event
time that occurs 2 ms before BMIN, the initial value might be near 0, and the final index might
be near 440, or 0x01B8. This corresponds to a time of 35.2 ms after the reset event time, or
33.2 ms after Booster beam injection. The intent is to sample the value measured just after
accelerated Booster beam is extracted.

The analog channel number associated with the first BLM is determined by the configuration
data in the CINFO system table. This is how BLMS determines where the waveform data is to
be found in memory space. The BLMs used in a node are assumed to be assigned consecutive
channel numbers. If a second 8-channel Swift digitizer module is used, its channels should
follow the first eight, allowing for up to 16 channels. The parameter specifying the number of
BLMs determines how many channels will be processed, beginning at the initial channel. For
the case shown above, only two BLM signals were actually connected in this test node.

The number of 15 Hz cycles specifies the length of the partial period. The number of these

Booster BLMs p. 2

periods (“parts”) determines the long term period. In the test node case shown above, the
partial period was about 17 seconds, and the long term period was about 100 seconds. To
establish a partial period of 5 minutes and a long term period of one hour, use PART #CY
<1194> and #PARTS <000C>. (These hex values correspond to 4500 cycles and 12 partial
periods.)

The sums are exhibited as analog channel readings. The initial channel for these output
values is specified. The number of channels used is 16 times the number of clock events used.
As described above, this is 160 channels for 10 clock events. The order of these channels is the
number of BLMs in use for the first clock event followed by the BLMs in use for the second
clock event, etc, with gaps to make room for those BLMs not in use. The sums for the first
BLM will therefore be found at channels 0200, 0210, 0220, etc, in the above example,
corresponding to clock events 11, 12, 13, etc. The sums for the second BLM will be at
channels 0201, 0211, 0221, etc.

Floating point sums and alarms
The sums are computed in floating point, of course. Because of the wide range of

possible beam losses, it is impractical to convert these into 16-bit values as has been done for
all IRM channel readings heretofore. Additional support has therefore been added to the
IRM system software for floating point raw data. An analog channel may be configured to
have floating point values of integer values. If it is designated a floating point channel, its
data is housed in a parallel table to the usual ADATA (Analog Data) table. The parallel table
has space to hold floating point values for reading, setting, nominal and tolerance values.
The floating point values are assumed to be in engineering units; there is no “raw” version
that exists. These data are “born” in engineering units; they have no other form. Suitable
Acnet primary and common transforms must be used to reflect this.

Along with adding a new table that houses floating point data values, the alarm scanning
task was modified to support them as well. If a channel is designated floating point, then
alarm checking is done using floating point comparisons.

Because of the nature of beam loss sums, alarm checking will naturally specify minimum and
maximum values rather than the usual nominal and tolerance values. The minimum value is
likely to be zero, and the maximum value will be a value of the long term sum above which
an alarm message is desired. As soon as the loss improves, and the sum drops below that
maximum threshold, one would wish the alarm system to indicate the losses are “good.” As
a result, the new minimum and maximum alarm checking logic does not exhibit the
“hysteresis” behavior that it does for the nominal and tolerance cases, in which a channel in
the “bad” alarm state does not regain “good” status until the reading falls within half the
tolerance amount. The new min/max logic can also be used for integer channels.

The designation of a channel as floating point is done via bit 12 of the alarm flags word field
in the ADATA table entry. The designation of min/max alarm checking logic is done by setting
bit 5 of the same alarm flags word. The Acnet analog alarm block handling in both RETDAT
and SETDAT will be modified to deal with these new options. Another note deals with these
details.

Booster BLMs p. 3

