
Log the Linear BLM Signals
Wed, Jan 17, 2007

The linear BLM values from the new digitizers designed by Craig Drennan must be accessible via 
the FTPMAN Snapshot protocol. But the integrated values will be 32 bits long. Either we must make 
changes to allow delivery of 4-byte values in reply to such requests, or we must convert the 32-bit 
values into 16-bit values. To do the latter, consider converting the linear 32-bit values into 16-bit 
log values. One will lose some precision, of course, but it may be quite adequate for plotting.

The formula used to convert the log values into engineering units is arbitrary, but for the sake of 
this discussion, assume it is chosen to match that used for the older log amplifier digitized values.

R = 10^(2.5*v – 3.343)

where R is radiation in engineering units, and v is the raw log amplifier output voltage.

Assume that the new linear values are directly proportional to radiation.

R’ = k*v’

where R’ is the radiation result, and v’ is the linear voltage reading. Note that this v’, since it is 
the sum of successive raw voltage readings, may be considerably larger than 10 volts.

Compute a value for v such that R’ = R.
k*v’ = 10^(2.5*v – 3.343)

log10(k*v’) = 2.5*v – 3.343

v = (log10(k*v’) + 3.343)/2.5

log10(k*v’) = log10(k) + log10(v’)

log10(v’) = log2(v’) * log10(2)

As an integer value, what we have for v’ is n = 32768*v’/10, so that v’ = n/3276.8.
log2(v’) = log2(n) - log2(3276.8)

We can easily compute 2048*log2(n) from the floating point exponent field and a table lookup.

Putting it all together, we have

v = (((log2(n) - log2(3276.8))*log10(2) + log10(k) + 3.343)/2.5

vraw = (((log2(n) – c1)*c2 + c3)*c4

where
k = 0.0108558*3276.8 35.57229
c1 = log2(3276.8) 11.67807
c2 = log10(2) 0.30103
c3 = log10(k) + 3.343 4.894112
c4 = 3276.8/2.5 1310.72
vraw = Integer representation of voltage v.



We can simplify it even further to:
vraw = log2(n)*c5 + c6

where
c5 = c2*c4 394.566
c6 = (c3 – c1*c2)*c4 1807.04

Note that this could be done using integer arithmetic. What we have originally, when examining 
the value of n is 2048*log2(n). Rewrite the above formula for vraw as:

vraw*65536 = (2048*log2(n))*(32*C5) + c6*65536
vraw*65536 = (2048*log2(n))*12626 + 118426154

This may be done as 32-bit integers, with vraw obtained from right shifting the result by 16 bits.

How to get 2048*log2(n)
Convert the 32-bit integer n into single precision floating point. Then examine the 8-bit biased 

exponent field of this 32-bit value, and remove the bias of 127. This gives the 5-bit characteristic of 
the result. Take the most significant 11 bits of the 23-bit mantissa, not counting the hidden “1” bit, 
and index into a array of 2048 elements to get a similar 11-bit value that obeys the log curve.

The values in the table elements are 
2048*log2(1.0 + i/2048)

where i ranges from 0 to 2047. Note that the log2 ranges here from 0 to nearly 1, so the final result, 
when converted to an integer, ranges from 0 to 2047. Take the characteristic times 2048 and add the 
11-bit value from the table to get the final value of 2048*log2(n).

A few examples follow:

n float(n) exp ch’ristic 2048*log2(n) v R
16 41800000 131 4 2000 1.033 0.174

1024 44800000 137 10 5000 1.755 11.12
16384 46800000 141 14 7000 2.237 177.9

1048576 49800000 147 20 A000 2.960 11383
33554432 4C000000 152 25 C800 4.361 364260

The last example is larger than anything mathematically possible with a 500-point summation.

The precision of the result is about 3 decimal digits, which should be enough for plotting.

Computing 2048*log2(n) for the PowerPC
The PowerPC instruction set includes cntlzw, which yields the number of leading “0” bits in 

a 32-bit integer. It turns out that this is considerably faster than the method described above that 
starts with converting a 32-bit integer into a single precision float. Converting the integer to a 
double on the PowerPC, for which double precision is fundamental, resulted in a total time—for 
building the 32-bit sums and computing the required logs—of 0.35 ms for 2K points. Replacing the 
floating point operations with the cntlzw approach gave a total time of 0.20 ms. These times were 
achieved on a PowerPC running at 233 MHz.

Log the Linear BLM Signals p. 2


