
 Cavity Conditioning
Local application for new Linac

Thu Sep 24, 1992
Introduction

Conditioning the new Linac rf cavities will take hours or days for each module.
This local application is an implementation designed to automate the procedure so
that it can run unattended. The main idea is to slowly ramp the rf peak forward power
from the klystron toward a target value, as long as the radiation remains below a
threshold, taking care to watch the vacuum pressure and the spark rate, reducing the
forward power if either exceeds specified levels, and resetting any rf system trips. The
implementation of the program is the subject of this note. The user interface is
provided by the Parameter Page.

Hardware signals (klystron system 3)
Description Name Units

1. rf peak forward power A/D reading K3WG1P MW
2. rf peak forward power D/A setting " MW
3. vacuum pressure A/D reading (2) V3VP1,V3VP2 V
4. spark digital status bit reading
5. rf "on" digital status bit reading
6. rf interlocks reset digital control bit pulse
7. rf system reset digital control bit pulse
8. clock event status bits

Software parameters
Description Name Units

1. enable status/control bit for this application
2. rf peak forward power target value K3TRGP MW
3. rf peak forward power delta K3DLTP MW
4. time interval delta K3DLTT SEC
5. spark rate threshold K3SPKT %
6. vacuum pressure threshold K3VACT V
7. rf peak power back-off percent K3PPBK %
8. maximum #resets of trips K3MAXT
9. spark rate output value K3SPKR %

10. delay after back-off due to vacuum K3VACD SEC
11. maximum #sparks to compute spark rate K3MAXS
12. status bit for program state 0. Waiting for recovery.
13. control bit to clear spark-counting statistics counters

Local application support
As a local application, the code is called as a Pascal procedure by a special entry in

the Data Access Table of the local station. This entry causes each local application
residing in the system Local Application Table be called by name. The 4-character
name is used to search the CODES table of programs that have been previously
downloaded by name into non-volatile memory. The first argument of the call is a
byte whose value identifies the type of call:

0: Initialization call. Allocate and initialize static memory used during
the time the local application is enabled.

1: Termination call. Free static memory allocated by Initialization call.
2: (not used)
3: Cycle call. Process with new data in data pool.
4: Network call. Message received for this application.

The second argument is a pointer to the 12-word parameter area of the Local
Application Table entry. The first longword of this area provides storage for the pointer
to the static memory allocated during the Initialization call. The next word is the enable
Bit#, and the remaining words are used for additional parameters, usually specified as
Channel#s and Bit#s. (See the layout for this application in a later section.) When the
enable bit is set, the application is enabled. When it is clear, the application is disabled.
The system notices changes in the state of this enable bit and schedules Initialization
and Termination calls accordingly. When there is no change in the enable bit, and the
bit is set, the application receives a Cycle call. Special logic is included that provides for
automatic replacement to a new program version as soon as it is downloaded, if the
application is enabled. A local application is downloaded into non-volatile memory
but executes out of on-board ram. A checksum is kept for the downloaded version that
is verified each time an application’s enable bit changes from a 0 to a 1 and its code is
copied into allocated ram for execution.

State flow
Local applications of the closed loop style are typically implemented with state

logic. In this case of the cavity conditioning application, there are two states: 0 and 1.
When the application is first enabled, state 0 is asserted. While in state 0, the
application looks for a valid set of readings (both hardware and software) and also for
the rf system to be “on”. Constants in the program are used to assess whether the
values of the hardware and software parameters are within “reasonable” ranges. Once
these conditions are satisfied, the program switches to state 1.

In state 1, the time delta value is used as a period over which to determine a maximum
value of the rf peak forward power readings. At the end of the time interval, the
maximum is compared with the target value to determine whether an adjustment of
the peak power delta can bring the power closer to the target value. Independent of
this time delta interval, the maximum #sparks parameter is used to form a spark
period interval over which the spark rate is calculated. The spark rate is checked
against the threshold value to decide whether to back off. Vacuum is always checked
against the vacuum threshold to decide whether to back off. And the rf “on” status is
always checked to detect rf system trips.

Statistics are maintained about the relationship between sparks that occur and the
relevant Tevatron clock event signals that indicate what kind of accelerating cycle was
active. Counts of events, sparks occurring on those events, counts of sparks that occur
during which Booster batches, and a histogram of spark occurrences throughout the
supercycle. A self-clearing control bit is provided that, when set, clears the spark
counting statistics.

All software input parameters (except the maximum #trips) can be modified during
normal state 1 operation to take effect after the current time interval. Also, the peak
forward power can be changed manually by knob control even while the conditioning
program is regulating the peak power, as the changes made by the algorithm are
always applied incrementally from the current setting.

A “state 0” status bit is provided as an output so that it can be monitored by the alarm
system to announce when the application is no longer regulating.

Accelerating Module Conditioning p. 2

Logic details
The response to an rf system trip is to first back off the forward power, reset the rf

interlocks and subsequently to reset the rf system itself. Such resets of rf trips are
limited to repeat no more often than 10 seconds, a program constant.

There are two vacuum readings. The one with the worst reading is used in the
algorithm because only one vacuum pump may be required to be running, and the
reading of a pump which is off appears as “excellent” vacuum. The response to poor
vacuum compared to the vacuum threshold value is to back off the forward power
and delay for the vacuum delay time before allowing another back-off due to vacuum.
This gives the vacuum system time to approach equilibrium under operation at a
reduced peak forward power level.

The spark rate is computed over the number of 15 Hz cycles required to accumulate
the number of sparks specified by the maximum #sparks parameter. Expressed as a
percentage, it is compared against the spark threshold.

When there have been more rf system trips than that given by the maximum #trips
parameter, the application reverts to state 0. Manual recovery of the rf system will
allow a return to state 1 processing with an additional maximum #trips
permitted—assuming nothing else is wrong.

The application was developed using MPW Pascal on the Macintosh to take advantage
of its support for the floating point 68881 chip, as most of the logic in the program is
based upon engineering units values. Its current 400 lines of source code run in less
than 3K bytes.

Parameters layout
The layout of the parameters area of the Local Application entry as viewed by the

Local Application Parameter Page is as follows:

E LOC APPL PARAMS 09/24/92 1711
NODE<0623> NTRY< 5>
NAME=COND CNTR=00F8
TITL"LGAL RF CAV CONDITIONING"
SVAR=00000000
ENABLE B<02A0> COND ENABLE
SPARKS B<019E> REFLECTED POWER
RFONST B<0198> RF ON IS ENABLED
RFINTLK B<015C> INTERLOCK RESET
PPWR C<0480> K3WG1P MW
VACUUM C<049E> V3VP1 V
 <0000>
RFRESET B<0325> SYSTEM RESET
EVENTS B<0230> EVENT 18
OTHERS C<0490> K3TRGP MW

The first parameter word specifies the enable Bit# that must be set to enable the local
application program to run. Setting it to a “1” enables calls to be made to the
application, beginning with the Initialization call. Setting it to a “0” schedules a
Termination call before releasing the program’s execution memory.

This application uses enable Bit#+1 for the “state 0” output bit and enable Bit#+2 for

Accelerating Module Conditioning p. 3

the control bit that clears the spark counters.

The lo byte of the CNTR word is merely a diagnostic count of the number of times the
application code is called. It serves to show evidence of obvious activity when viewing
this entry on a memory page display. The hi byte of the same word shows the elapsed
time required by the last 15 Hz program invocation.

The ptr to the application’s static memory, established as a result of the standard
Pascal New procedure used for dynamic memory allocation, is stored during
Initialization call processing for use during subsequent Cycle call processing. One can
gain some diagnostic insight of the application’s activity by observing the contents of
the memory block pointed to by this address with the Memory Dump Page
application. The first 8 bytes are used for a standard memory block header. The rest of
the block can be matched with the declaration of the static variable data structure of
the application.

The last 9 words are used for hardware Chan and Bit#s. The final word is a base
Chan# of the sequence of Chan#s used for the software application parameters.

Accelerating Module Conditioning p. 4

