
Correlated Data in Java
Robert Goodwin

Tue, Mar 22, 2011

Data collection via the GETS32 protocol is widely supported in Acnet front ends. For Java 
programs, the Data Concentrator Engine (DCE) uses an RMI callback to deliver each piece of 
requested data soon after it arrives from a front end. Included in the callback is a time stamp to 
make it possible to correlate data so that one can work with data measured on the same 15 Hz 
beam cycle, say. But since the callbacks may come from several different DCEs, they can occur in 
any order. The problem for the Java program is how to “put Humpty Dumpty back together 
again” to recover a complete set of correlated data. This note describes a scheme for doing this, 
with the end result being a new callback that delivers an entire set of correlated data.

This scheme, written in C, involves a few functions that keep the correlation logic isolated so that it 
does not complicate the Java program logic. Here are the functions involved:

corr = CorrInit(int nDev, int nCopies, Func fun); /* Initialize correlated data */

CorrData(CorrBlk *corr, int devx, int time, int dat); /* Table callback data */

CorrTerm(CorrBlk *corr); /* Terminate correlated data */

fun(int time, int count, int *data); /* user callback function */

The CorrInit function is called to set up support for managing the data from a set of devices. 
Memory is allocated, given the number of devices and the number of copies of the returned 
values. Each copy includes a time stamp key, a count of tabled devices with that time stamp, and 
the set of device values. The copies allow for different time stamps to be handled at the same time. 
The number of copies might be only 2 or 3.

The CorrData function is called for each callback that the Java program receives from the DCE. 
The data value is tabled associated with the given time stamp.

The CorrTerm function ends the correlated support for the set of devices in question. One may of 
course manage several active correlated data sets at once.

The callback function fun provides to the Java program a complete set of correlated data. Its 
parameters include the time stamp key, the count of devices whose data has been collected, and 
the array of data values. Here, the data and time stamps are assumed to be 32-bit integer values.

Review this scheme in more detail. The CorrInit function allocates memory sufficient to manage 
the sets of correlated data. A pointer to the allocated memory block is returned as corr. Note that 
corr must be passed to CorrData for each callback and finally to CorrTerm. This allows a 
program to use the same scheme for managing several sets of correlated device readings.

Assume that the Java program maintains an array of device_ids of some sort. When it gets a 
callback, it will convert the device_id into a device index devx by finding the device_id in this 
array. If one had a set of 10 devices being managed, the values of devx will range from 0–9.

The time is specified here as a 32-bit integer. In Java, it is actually an 8-byte value in millisecond 
units since the year 1970. To convert it to a 32-bit integer, one could establish a time base line when 
the request is first set up, and the values passed as time may be relative to that base value. In 
millisecond units, 32 bits can count to nearly 50 days.



The main logic is in the function CorrData. It takes the time stamp and finds a match against the 
copies of data sets that it manages in the allocated memory block pointed to by corr. On finding a 
match within an allowed range of thr milliseconds, it copies the data value into the devx element 
of the associated array. (The value of thr may be 5, say.) Each time it tables a data value, it checks 
to see whether all nDev devices have been collected, and if so, it makes a callback to the user 
function fun, then advances to the next data set, freeing up the one just passed to the user. If there 
are additional full data sets, it makes the corresponding callbacks for them as well.

If CorrData does not find a match against an existing data set, it looks for a free entry to use and 
initializes it accordingly. If CorrData cannot find a free entry to use for a new time stamp, it frees 
up the oldest data set by performing a callback with the incomplete data set, then frees that entry 
for use with the new time stamp.

Note that this scheme does not impose an explicit time-out in case a front end fails to deliver data 
that was requested to the DCE so that no callbacks come for data from that front end. What it does 
impose is a user-specified number of data sets, which means it can handle that many different time 
stamps at one time. If CorrData cannot find a free entry, it means that all data sets are full, which 
is only likely if one or more front ends is not returning the data requested. What will usually 
happen, with all front ends responding, is that the correlated data callback will be made as soon as 
a device has been placed in the array to comprise the complete data set. Only in the case that some 
front end is not replying with its requested data will the correlated callbacks be made late, 
depending on the number of data sets being maintained. The Java program can recognize the 
incomplete callback because the returned count is less than nDev.

The final result of this scheme is to provide a new correlated data callback to the user program that 
includes all of the data read for a single time stamp.

The reason for suggesting use of an event-based data request is that such requests have time 
stamps that mark when the event occurred, which all front ends can agree on. For periodic 
requests, in contrast, the time stamp will depend upon the time, µP Start, when a front end is 
scheduled to begin its cyclic (10Hz or 15Hz) work. If front ends are targeted that do not have the 
same µP Start, it is more difficult to match the time stamps to achieve correlated data.

To flesh out the details described here, see the file called CorrData.c.

Correlated Data in Java p. 2


