Data Streams Implementation

Asynchronous packet flow
Sep 5, 1989
Introduction
Data streams are packets of data that are queued and made available to any data
requester. The difference between a data stream and normal data acquisition is that a data
stream packet may occur at arbitrary times asynchronous to normal data acquisition. A
simple example is data which comes from a serial port. Another is 720 Hz sampled data
collected by a ramp co-processor. Another is clock event data.

Normal data acquisition is done synchronously, and typically with only a single value
which is collected at 15 Hz. On the other hand, a data stream can have packets added to it at
any time even with varying amounts of data. Data stream support herein described makes
this variable type of data accessible via a normal data request.

DSTRM system table

The DSTRM table provides for itemization of the various data streams that are supported.
A data stream is identified by an index into this table, just as an analog channel is identified
by an index into the ADATA/ADESC tables. The format of a DSTRM entry is as follows:

gFlags| qType eSize hSize gSize

qPtr - -

T 1 I T 1 I
data stream 8-character name

The gFlags include a bit (#6) to indicate that at reset time the queue associated with the
data stream should be allocated from dynamic memory. Another flag bit (#7) indicates that
the queue has been initialized. The qType is a small positive index which gives the type of
queue header used, as different types of data streams may require different queue
management. This index implicitly characterizes the means of queue initialization, packet
entry, and packet extraction. The Size word is the entry size of the packets in the queue.
For variable size packets, this word is zero. (In this case, the first word of each variable size
packet is the size of the packet including the size word.) The hSize word is the amount of
header space needed to support the data stream itself. It is referred to as the data stream-
specific header. The gSize is the total size of the queue which is used to allocate the queue
in the dynamic case and is also used to initialize the queue header. The gPtr is the pointer
to the queue header. In the case of a dynamically allocated queue, this pointer points 8 bytes
beyond the allocated area to allow for the common form of dynamic header:

mSize mNext mType

The mSize is the allocated size of the memory block, the mNext is a pointer to the next
block in a chain (when used), and mType is the memory block type value of 0x000B for this
case. With the gPtr pointing just beyond this header, the same qType can serve either the
dynamic or the static case. This first part of the DSTRM entry can be accessed using listype
#53.



Data Streams Implementation p. 2

The 8-character data stream name can be used to identify the data stream mnemonically. It
can be accessed using listype #54.

Queue format
The data stream queue format consists of 3 components. The first part is the same for all
data stream queues. Its format is as follows:

qType eSize hOff gSize

total - -

Note that the values are copies of the DSTRM entry with a few exceptions. The first word is
the gType without any flag bits. (This could be changed if the flag bits are needed, as there
aren’t expected to be many queue types.) The hO£ £ is the sum of the header sizes of the first
2 components and is therefore the offset to the data stream-specific header. The total
longword is the total number of packets ever written into the queue. For diagnostic
purposes, the queue header can be accessed using listype #52.

The second component of the queue header is the gType-specific header. Its format for
qType=1 is as follows:

IN LIMIT START -

The IN word is the offset to the space for the next entry to be placed into the queue. The
LIMIT word is set to the queue size. The START word is the offset to the first entry to be
placed. It is initialized to point just after the total queue header.

The third component of the header is specific to the data stream itself. This is the component
whose size is declared in the DSTRM entry. An example of the format of the third component
is that used for the Clock Event Queue:

nFFull nFEmpty nLastCy rstTime

The first 3 words are diagnostic counts which give the number of times the clock event
hardware fifo was found to be full (and subsequently cleared), the number of times it was
found to be empty, and the number of clock events found in that fifo the last time it was
accessed to copy events into the Clock Event Queue. The last word is the time stamp
associated with cycle reset that is used to convert the hardware free-running time stamps
into ones that are relative to cycle reset. A Data Access Table entry routine manages this
header component for the Clock Event Queue.

Additional queue header forms can be designed for other queue types and for other types of
data streams.

Data requests
A listype (#50) will be used to access data stream packets. The form of ident used is as
follows:



Data Streams Implementation p.3

node [dsindx lan | node

dsindx

Both the short and long ident forms are shown. The requester identifies the data stream
index to select the data stream to be accessed. Another listype (#51) is used to request “old”
packets—packets which had been placed into the queue prior to the time of the request.

The format of the internal pointer that is kept during request processing is as follows:

dslndx ouT

L 1=ExtAnsFlag

Note that the OUT word, which is the offset into the queue of the last entry extracted is part
of the internal pointer and not part of the queue header. This means that different user
requests for the same data stream do not interfere with each other. This is a principal feature
of the data stream approach. The dsIndx value allows access to the queue header pointer
via the DSTRM table for fulfilling the request. When the ExtAnsFlag=1, the rest of the
longword is a pointer into an external answer fragment buffer kept with the request, which
just refers to the fact that the data has already been delivered from another node to this
node. This last feature is only used for locally initiated requests and for data server requests,
not for ordinary network data requests.

Returned data format
The format of the data that is returned in response to a data request of packet data from
a data stream queue is as follows:

#packets

pSize

L packets —|
of
data

The first word gives the number of packets that are included in the response data. If it is

zero, the queue had nothing in it this time. The second word gives the packet size. If it is

zero, the queue uses a variable packet size, and each packet of data will begin with a size
word, so the user can process them.

When making a request for previously-written packets using listype #51, the amount of
previous packets that can be returned is limited by the size of the requested #bytes. Such
requests might be one-shot requests and indicate a large buffer. Requests for only future
data might typically be repetitive requests using a moderate size request buffer. A one-shot
request to listype #50 would by definition return no information beyond the packet size.

Settings
One can make a data setting to write a packet into a data stream queue. If the queue has
variable length entries, a size word (=#dataBytes+2) is inserted ahead of the setting data to



Data Streams Implementation p. 4

form the packet. If the queue has fixed size entries, the length of the setting data must be a
multiple of the packet size to be accepted. Either listype #50 or #51 can be used to write a
packet into a queue.

The routine DSWrite is used to write packet(s) into a data stream queue. It is declared as
follows:

Procedure DSWrite(dsIndx,nBytes: Integer; VAR data: DType);

The dsIndx argument is the index part of the ident in the setting request. The nBytes
word is the number of data bytes, and the data parameter is a pointer to the array of data
bytes of the packet. If the queue uses variable size packets, only one packet can be written
with a single call to DSWrite. Note that in this case, a size word is not included as the first
word of the data array. The size word is written (with the value nBytes+2) into the queue
preceding the packet data.

Settings should not be used to data stream queues other than those which are normally
written to by a task. Queues which are written to by interrupt activities or by another
processor on the same backplane should not be written to by a data setting.

Software modularization

Most data stream logic is centralized into the DStream module. The branch tables
indexed by gType are all in this module. This includes routines which handle queue
initialization, read access and write access. Generation of internal pointers is done as usual
by code in the ReqDGenP and PRegDGen modules.

Data-stream specific code—that used to write into a data stream queue—knows about the
DSTRM table entry format and the first and third components of the queue header. It does
not need to know about the gType-specific header component.

Variable size packets

As stated above, variable size packets are recorded in the queue using a size word
preceding the data. The size word is sufficient to allow data request processing of the
packets using listype #50. But looking backwards to retrieve packets written previous to the
request, in order to fulfill a listype #51 request, is quite another matter. In order to make this
possible, there is an extra word in the queue that precedes the size word. This word
contains the offset from the start of the queue header to the previous packet’s size word.
This allows backwards traversal of the queue’s packets. When a variable packet size queue
is initialized, the START word points just beyond any data stream-specific header. A zero
word is placed there, and the IN word points to the next word, which will become the size
word of the first packet placed into the queue. The extra previous pointer word that
precedes the size word is not returned when packets are delivered in response to a data
request.

Data stream-specific header initialization

When a data stream queue is initialized, all data stream-specific header space is set to
zero. If nonzero values need to be entered there, the data stream-specific code can notice a
cleared value and set up any nonzero initialized values needed.



