
Event-driven Replies to Data Requests
In sync with clock events

Wed, Mar 23, 1994

With the addition of clock event detection hardware in the digital IndustryPack board used in IRMs, 
we can provide event-driven replies to a data request. For the Classic Protocol, one must be able to 
specify what clock event should be used to indicate on which 15 Hz cycles the data should be 
sampled. In Linac, for example, one could then reply to a data request only on beam cycles.

The Classic Protocol format for data requests includes the following:

The period byte is expressed in cycles (15 Hz), allowing for any period from 1–255 cycles, or 0 for a 
one-shot request. For event-driven replies, an 8-bit clock event# is needed, so it is natural to specify 
this in place of the period byte. But then we need to mark the fact that the “period” byte is really an 
event#. The #listypes byte is usually limited to 4 bits or so, as a Classic request is for a matrix of data 
to be returned, with all idents processed for each listype#. If 4 bits is enough space for the #listypes 
field, we can use the upper 4 bits of that byte to contain flags, one of which can mean that the 
“period” byte is really a clock event#.

When the specified event occurs, an update of the request is generated, so that the data from the data 
pool is returned on that 15 Hz cycle in which the event has been detected. How can the logic 
recognize which events have occurred?

The event detecting hardware is programmed to generate an interrupt whenever any event is 
detected. The interrupt routine reads the event from a FIFO, allowing for many events to occur almost 
simultaneously without being lost, time-stamps it, and writes the time-stamp into the clock event 
times table. The information about clock events is present in this table, but it is not so easy to process 
it in order to quickly check whether it is time to reply to a data request.

One possibility is to maintain a clock event queue, in which is recorded the event# for each event that 
occurs. The interrupt routine, besides updating the clock event times table, would also write into this 
queue. To make it easy for a host to read out the contents of this queue, it can be designed as a data 
stream. But DSWrite, normally used to write records into a data stream, has too much overhead 
processing for interrupt code, so we can access this queue directly more efficiently.

Now the process of deciding what events have occurred since the last request update is easy. For each 
request, there must be kept an OUT offset into the event queue that indicates the next record to be 
checked. Scan all event records written into the queue since the last update, looking for a match on 
the specified clock event#. If there is a match, then it is time to update and reply to the request.

Another approach is to maintain a bit map of events that have occurred since the last cycle. For such 
requests, logic must be done each cycle to determine whether it is the time to reply. As a result, replies 
may be updated up to 15 Hz, if the event occurs at 15 Hz. To maintain such a bit map, one must be 
careful, as events are processed by an interrupt, and the bit map may change between execution of 
any two instructions. The task-level solution for this is to build the bit map in another area, then 
exclusive-OR that bit map into the dynamic one. In this way, any bits that were set via interrupts 
occurring since the bit map was copied are not lost; they will be detected on the next cycle.

Implementation
Support for event-driven replies has been implemented for Classic Protocol data requests, 

using the bit map approach to detect whether a given event has occurred since the last cycle. In the 
case that no events of the given type occur, no reply is generated. This makes it difficult to be sure 
that the data request was received. The same is true for a server node; it cannot report that a reply is 
tardy, unless it also knows about the event, too. At the moment, this situation is not detected, but the 
server node does need to detect the events in order to send replies to the requester.


