Floating Point 15 Hz Samples

Addition to Cycle table support
Mon, Dec 13, 2004

The recent note, Recent 15 Hz Samples, describes the support for access to 2-byte analog
channel readings sampled from the 15 Hz data pool. This note describes an addition
that provides similar access to recent floating point channel readings that can come
either from scaled ADATA readings or from FDATA raw floating point readings.

The former scheme results in reply data that is an array of 2-byte values, beginning with
the most recent sample from ADATA, followed by such samples from ever-earlier cycles,
and ending with the cycle number of the most recent reading. The support described
here returns reply data that is an array of 4-byte floating point values, where the first
one is the most recent sample from FDATA in engineering units, followed by ever-earlier
samples from FDATA, and ending with the cycle number, expressed as a floating point
unsigned value. For channels in which FDATA entries are not valid, namely those for
which the FLT flag bit is not set in the analog alarm flags word, the returned floating
point values are scaled values of the ADATA samples.

In practice, very few raw floating point channels are in use. Each is indicated by setting
the FLT bit in the alarm flags word in the ADATA entry for that channel. Consider using
the cycle table entries for the raw floating point channel readings, with the advantage
of not having to find space for a new FCycle table that is only sparsely occuppied. We
then have to accept keeping only 16 floating point values rather than 32 integer values.
To make it palatable, we cache the FLT bits of the analog alarm flag fields, keeping them
in a new bit map that uses 1 bit per channel. With 2K channels, we require a 256-byte bit
map. The inner copy loop checks a bit for every channel, to avoid overwriting the
previously captured floating point values with unused integer values. The former bit
map used for the integer case keeps one bit for every 16 channels, in order to optimize
the copying action to used channels (those with a name in at least one of the 16).

When fulfilling a request, the CYCLEXB value, an even number of bytes offset in the
range 0-62, or 0—0x3E, is used in a slightly different way for caching the FDATA values.
If we take this value, shift it left by 1 bit, and AND it with 0x3c, we have an offset in the
range 0—0x3C that is suitable for storing 4-byte values. Obviously, this modified index
“wraps” twice as often as that used in the integer case, about 1 Hz rather than 2 Hz.
Note that this assumes a 64-byte size of a Cycle table entry.

The bit map keeps the FLT bits organized as 16-bit words. If the original bit map has a
one, meaning that 16 channels should be copied, the new bit map word can easily be
checked for having any of its 16 bits set; if any is set, code like the following skips the
copy when appropriate.

CYCLEL LSR #1,D7
IF# CC THEN.S ;copy only if cached FLT bit = 0
MOVE (A0), (Al)
ENDIF#
ADD D1,A0
ADD #CYCLENB,Al
DBRA DO,CYCLEL



Floating Point 15 Hz Samples p.2

If desired, the above loop can be replaced with the simpler loop if the bit map word of
16 bits is known to be zero before entering the 16-word copy loop. The result of all this
is to avoid overwriting the Cycle table entries for raw floating point channels.

Although one might try to combine the integer and floating point cases into the same
copy loop, it may be easier to perform a separate scan through the new bit map to do
the copy of the FDATA values.

It is a good idea to try to keep up-to-date the bit map that denotes channels for which
the FLT bit is set. If we update one 16-bit word of the FLT bit map every 15 Hz cycle, by
monitoring the FLT bits for 16 consecutive channels, it takes about 4 seconds to update
all 1K channels, or 8 seconds to update 2K channels. Maybe this is good enough. To be
safe, it is probably a good idea to clear the Cycle table entry of a channel for which the
FLT bit has just been found to be set. This ensures that the contents of that entry do not
contain invalid floating point values, since until the time that the FLT bit is set, the entry
would have been filled by integer values.

Armed with the array of 64 words of 16-channel bit maps, assuming a 1K channel node,
we have some help during the copy operation that is performed for each raw floating
point channel each cycle. We scan through each bit map word looking for a nonzero bit
map, then scan through that group of 16 channels looking for a bit to be set to cause the
current FDATA reading value to be copied into the Cycle table entry using the modified
index offset described above.

Call the new bit map that is organized into 16-bit words the FLTMAP. It needs space for
an array of 128 such words, in order to cover the 2K channel case. (The earlier bit map,
located in the Name Table header, was called NTBMAP. It was arranged as bytes, each of
whose bits represent groups of 16 channels, for which at least one is actually in use; it
only requires 16 bytes for the 2K case.) One place that is available is the 256 bytes of low
memory based at 0x2E00.

Request support

Listype 89 is used to support floating point access to Cycle data, either scaled
values taken from ADATA, or raw floating point values taken from FDATA. (Listype 88 is
used to access 2-byte integer readings from the ADATA table.) The read-type# is 33, and
the ptr-type# is 49. The internal ptr format consists of 4 long words:

ptr to Cycle table entry
ptr to ADESC table entry
ptr to FLTMAP word
original channel ident

The read-type routine uses this structure to generate the reply data efficiently. The low
4 bits of the channel ident are needed to sample the correct bit of the FLTMAP word that
represents the cached FLT bit for 16 consecutive channels. If this bit is 0, integer Cycle
table values are converted to engineering units using the scale factors from the ADESC
entry. If the bit is 1, raw floating point values are copied from the Cycle table entry.



