
Linac Front-end Software
Comparison between MC68040 and PowerPC

Robert Goodwin, Robert Peters
Tue, Jul 30, 2002

The front-end software, written for the Motorola 68K CPU family and used for many years 
for control system support in Linac and other Fermilab projects, has been converted to run on 
the PowerPC. During the conversion, a strong effort was made to preserve the same features 
that are supported in the original implementation. As a result, the list of supported features is 
nearly identical, so that either may be used for a given project. This note is an attempt to 
compare and contrast the two implementations.

Hardware implementations
The MC68040-based nodes are usually delivered in the Internet Rack Monitor (IRM) 

configuration, in which a rack-mounted 3U crate is outfitted with I/O connectors, ethernet, 
Tevatron clock, and houses the MVME-162 CPU board in a 3-slot VME crate, which allows 
for some expansion. One required component of such a configuration is a Digital IP board, 
which uses one of the four available IndustryPack (IP) slots of the CPU board, which uses a 
25 MHz clock and includes 4 MB of dynamic RAM and 0.5 MB of nonvolatile memory. The 
Digital IP board, along with an associated digital interface board mounted within the crate 
configuration, provides support for 8 bytes of digital I/O and also clock decoding that results 
in a cycle interrupt that drives the periodic accelerator-synchronous activities of the software. 
(It also provides interrupts for all clock events.) To support analog I/O, another IP board is 
used in connection with an analog interface board. This board supports 64 A/D channels, all 
of which are automatically digitized at 1 KHz and placed into a circular buffer (large enough 
to contain 512 sets of data), plus 8 D/A channels. The two additional IP slots that are 
available may be used for timing channels or high-speed digitizers. The two spare VME slots 
are seldom used.

The PowerPC implementation is based on the MVME-2401 CPU board that uses a 233 MHz 
clock, 32 MB of dynamic RAM, and two PMC slots. In all configurations, both slots are 
occupied by a 2 MB nonvolatile RAM board and a Digital PMC board, which functions much 
like the Digital IP board above, but it also includes 8 timers. To support analog I/O, one can 
use an IP carrier board in a VME slot to hold the necessary IP board. In the current 
implementation used in Linac, the analog I/O is interfaced through Smart Rack Monitors 
(SRMs) that communicate via arcnet with the VME crate housing the CPU board.

The two implementations use CPUs of very different clock rates. But the PowerPC boards 
have relatively slow access times (~1 µs) to both the nonvolatile memory and the Digital PMC 
board. This means that heavy access to nonvolatile memory can result in a large cost in 
PowerPC performance. In order to improve this situation, and thereby regain some loss of 
performance, a number of changes have been made to the system code. Searches of 
nonvolatile memory tables have been optimized, and algorithms have been rewritten to 
minimize the number of slow accesses needed. These changes have been made to both 
implementations. The resulting performance measurements are described later.

Major common elements
In nearly all respects, operation and software organization of both implementations 

are identical, even though the IRM system software is written in assembly code and the 
PowerPC system software is written in C. This is no accident at all; rather, it was one of the 
key strategies used during the PowerPC conversion effort. Both systems support the Classic 



protocols and the Acnet suite of protocols that are used in the Fermilab accelerator control 
system. The host level Acnet nodes, such as the accelerator console displays, use the Acnet 
protocols, including ACNAUX, RETDAT, SETDAT, FTPMAN, and ALARMR. The low level 
diagnostic programs that utilize the Classic protocols—supporting data requests, data 
settings, and alarm reporting—are used by programs that run on various and sundry client 
platforms, including Macintosh, PC, Unix, and the “little consoles” supported by direct 
hardware connection between a front-end and console display hardware, or indirectly by 
software emulation of such displays on the same set of client platforms. These Classic 
protocol clients are used as a low level method of access to these front-ends to assure 
consistent and reliable operation and to assist with problem diagnosis. Both sets of protocols 
are based upon UDP/IP to insure timely responses in a 15 Hz accelerator environment. UDP 
multicasting is used heavily by these front ends to distribute data requests or alarm messages 
spanning multiple nodes, either to all front-ends in an entire project, or in the case of the 
time-of-day, to the front-ends in all projects.

At Fermilab, full support of the Acnet protocols includes support for the Tevatron clock event 
system, which delivers up to 256 synchronizing signals encoded on a 10 MHz carrier to all 
parts of the accelerator complex. It is this clock event system that allows all front-ends in a 
project to operate in synchronism with each other at 15 Hz. It is this synchronous operation 
that makes possible delivery of correlated data across multiple front-ends to clients, which is 
a fundamental goal of the original system design. To assist clients that cannot operate in real-
time synchronism with the accelerator clock system, support for server-style requests is 
provided for both Classic and Acnet protocols, in which a request for a set of devices 
spanning multiple target nodes is sent by a client to any front-end, which in turn acts as a 
server to forward the request to all target nodes using multicasting, receive replies from all 
contributing nodes, and deliver a composite reply to the original client. When the client 
receives the reply, the data included is correlated across all target nodes, meaning that it was 
measured on the same 15 Hz accelerator cycle. Requests specifying periodic replies result in 
an immediate first reply, followed by periodic replies that are synchronized with the normal 
cyclic operation of the front-ends. One-shot requests merely result in the immediate reply. 
(Requests that specify returns on a clock event result in no immediate response, but only 
replies occurring on cycles after detection of the specified clock event.)

Configuration of these front-ends includes installing appropriate data in nonvolatile memory 
tables, so that when a front-end is reset, perhaps following a power outage, it knows all it 
needs to know to again take on its unique characterization and personality as a component of 
the accelerator control system. When a node is reset, it obtains a copy of the system code 
from a common server via TFTP, but its knowledge of the specific devices to which it is 
connected comes from information retained in its nonvolatile memory system tables. Local 
application programs are also stored in this nonvolatile memory, achieving rapid and 
automatic activation of those programs that act as an extension of the system code to further 
characterize that node’s operation. In summary, most of the software is common across all 
front-ends, but the particular suite of local applications installed may vary.

The cyclical pattern of operation is common across both front-end implementations and is 
supported by three tasks. A cycle interrupt, generally occurring at 10 Hz or 15 Hz, causes the 
Update task to run to refresh the local data pool of analog and digital data by accessing its 
own I/O interfaces and performing any closed loop algorithms that may be supported by 
local applications, after which it builds reply messages for all active data requests for which a 
reply is due on that cycle, queuing each such reply message to the network. Another task 

Linac Front-end Software p. 2



then performs the alarm scan, checking the data pool readings for all devices for which alarm 
scanning is enabled, after which it queues any resulting alarm messages to the network using 
the Classic protocol. (Acnet protocol alarms are delivered by a special local application that 
serves to shepherd them to the Acnet alarm handler.) The third task then runs to invoke the 
single active page application so it can perform its duties for that cycle. (The page application 
supports a “little console” user interface that may be hardware and/or software-emulated.)

MC68040-based nodes
The execution time for these three tasks can vary widely. In a typical IRM, the Update 

task completes in less than 5 ms. The Alarms task uses about (120 + 5*N) µs, where N is the 
number of devices enabled for alarm scanning. For 50 devices, this is about 0.3 ms. Most 
IRMs have much fewer devices enabled for alarm scanning. 

Of course, the execution time of a page application depends upon what it is has to do, but as 
an example, the parameter page application uses 0.4 ms on most cycles, with 1.6 ms needed 
when it updates its display at about 1 Hz. In the case that it is displaying data from other 
nodes, it can take longer, as it tries to be patient about receiving such external data each cycle. 
One example of that is an IRM parameter page display showing data from 9 different Linac 
PowerPC nodes, which might take about 13 ms due to this patience. The reason for such 
lengthy times required to collect data from the speedy PowerPC nodes is described in the 
next paragraph; however, such patience yields a display that always shows correlated data 
across all nodes. In the absence of the need for such page application patience, a typical IRM 
is busy less than 10% of the time. The spare time allows support for unusually heavy request 
activity when needed, all the while continuing to support 15 Hz accelerator activity.

PowerPC-based nodes
The Linac PowerPC nodes, in executing these same three tasks, spend a much longer 

time in the Update task, because most of the data comes from lower level front-ends called 
Smart Rack Monitors, or SRMs. At the beginning of each cycle, the front-end sends a request 
message to each SRM that causes it to read all of its hardware I/O interfaces and build a data 
pool that it then returns (over arcnet) to the front-end in response to its request. During the 
time that the SRMs are busy, the PowerPC front-end can only await the results. It cannot 
continue its cyclical jobs until it has the latest raw data from the SRMs, since some of those 
jobs need to use the latest data. It is this waiting logic in the Update task that ensures that an 
external requester cannot sample data from a partially-updated data pool. To an external 
client, the front-end’s data pool is updated all at once on each 15 Hz cycle. The time spent 
waiting for the SRM replies is typically 10–15 ms. The number of SRMs ranges from 0–6.

The Alarms task typically executes in less than 0.7 ms, for a case of 150 devices checked. The 
time is 1.1 ms for 240 devices. The formula might be about (40 + 4*N) µs. The parameters 
needed for performing the alarm scan—reading, nominal, tolerance, flags—are stored in 
nonvolatile memory, so this speed is not dramatically better than that of the IRM. But 
scanning alarms for 200-odd devices in 1 ms is hardly awful.

For the page application task, using the same example of the parameter page application 
displaying a list of local parameters, the time is less than 0.1 ms, with 0.7 ms needed when the 
display is updated. For the case of displaying data from another node, the typical time is still 
less than 1 ms, because both nodes had already spent time earlier in that cycle waiting for 
replies from their connected SRMs.

Linac Front-end Software p. 3


