
Nonvolatile File System
Structure used in 68K nodes

Mon, Apr 9, 2007

The scheme for managing files in the nonvolatile memory of 68K-based nodes is described here. 
This note is prompted by the considerable effort to recover some 200 files in the library node0508. 
A better backup scheme is required in order to forestall a repeat of this effort. (In PowerPC nodes, 
a different underlying system is used, based upon a file system support that VxWorks supports.) 
The allocation logic behind the scheme described here is taken from Knuth, Vol. 1, p. 435–440.

Data structures
The structure that houses the file system is really quite simple. There is a 16-byte header at 

the start of the nonvolatile memory area used for the file system. The rest of the memory is 
allocated and freed in a way that is analogous to any memory allocation method.

The 16-byte header format is as follows:

Field Size Meaning
free 4 Address of first (or only) free block
fill 4 Always 0
nvSize 4 Total size of nonvolatile file system area including header
mxSize 4 Current size of largest free block

Two types of variable-size blocks are in use: allocated blocks and free blocks. Each block includes 
an 8-byte header. For an allocated block, the header is:

Field Size Meaning
aSize 4 Allocated block size including this 8-byte header
aType 4 Block type, always 0x0000000F

For a free block, the header is:

Field Size Meaning
fNext 4 Address of the next free block, or 0 if none.
fSize 4 Free block size including this 8-byte header

Note that all allocated sizes and free sizes are multiples of 8 bytes. The fNext fields comprise a 
linked list of free blocks, where the list head is the field free in the 16-byte header above.

For 68K program files, currently with 8-character names beginning with either LOOP or PAGE, the 
entry point is always at the beginning of the code, which is assumed to start with a LINK 
instruction, for which the first 16-bit word is 0x4E56. Code that copies files knows this. Data files 
have no such restriction. Any file is assumed to be at least 32 bytes in size.

Memory management
The code that supports all this is found in the file MAlloc, including the following functions:

Name Function
MAlloc Allocate memory in nonvolatile memory, given a 32-bit size.
MLiber Liberate (free) memory, given address of block to be freed.
InzAlloc Initialize nonvolatile area as one large free block.
MSqueeze Compress allocated blocks so that all free space is coalesced into one block.



The InzAlloc call is only made at boot time if the 16-byte header is invalid. To force this to 
happen, first clear the 16-byte header, then boot. The file system area will then be empty. (As 
indicated below, the CODES table file directory should also be cleared to cleanly start over.) When 
releasing a block, the code notices if the block just freed is located adjacent to an already free block, 
and if so, it coalesces the two into one larger block. The overall coalescing performed by MSqueeze 
is not done except at boot time, since other system data structures may be affected.

Any file system needs a file directory. For these systems, the nonvolatile system table CODES serves 
that purpose. Each entry is a 32-byte structure with the following format:

Field Size Meaning
tName 4 4-character file type code
aType 4 4-character file name
cSize 4 File content size (not including 8-byte header)
fCksm 4 File check sum, a 32-bit sum of unsigned 16-bit words
fileD 4 File download address, immediately following 8-byte header
fileE 4 Program file entry address, after copying to dynamic allocated memory
vDate 6 File version date, in BCD Yr, Mo, Da, Hr, Mn, Sc.
cCntr 2 Call count diagnostic, #times the file has been copied into dynamic ram.

The concatenation of the tName and fName fields is often referred to as an 8-character filename. 
Names that are not 8 characters long should be blank-filled, although none yet exist.

Save/Restore
Note that saving a copy of the file system for backup means that both the CODES table and the 

nonvolatile file area must be saved. When performing a restore, both must be restored. The file 
system has integrity only when considering both structures as a unity. The fileD field in the 
CODES table entry refers to an address in the file area. Under a squeeze operation, which is only 
done when a node boots, fileD addresses may be altered as allocated file blocks are moved.

If it is desired to remove such an unknown block and add it to the free block linked list, there is no 
easy way to do this as yet. The method used (far too many times) is to manually enter enough of a 
CODES table entry to point to the block, then use the download page PAGEDNLD to release that block. 
This is done by entering 0000 over the size shown on a directory listing fragment, then clicking. 
The block will be added to the free block list, and the manually entered CODES entry will be 
cleared. The manual entry can be, say, a type name of AAAA, the cSize entered will be 8 less than 
the number shown by the PAGENVOL diagnostic, and the fileD field will be 8 more than the address 
of the block header shown by PAGENVOL. To get the field shown, do a directory listing with the 
filtering of A, say. (All this works because there are no valid file names as yet that begin with A.) 
After having to do this a few times, one’s nervousness tends to subside. Ideally, of course, this 
procedure should never have to be done.

File copying
Copying files between nodes is very commonly used when configuring a new front end 

node. The download page PAGEDNLD provides this service. One specifies a source node and 
filename, plus a destination node. The transfer takes place using the Classic protocol, with a special 
listype# (76) designed for the purpose. The 14-byte ident format consists of a node#, an 8-byte 
filename, and a 4-byte offset. Special offset values are used to deliver the file size, checksum and 
version date.

Version date
The version date is meant to tag the version of a file, since it is often the case that files are 

Nonvolatile File System p. 2



updated, so that some means of distinguishing different versions is necessary. For 68K systems, the 
date is assigned as the time when the TFTP server LOOPTFTP receives a new file and installs it into 
the nonvolatile file system. (In PowerPC systems, the date is taken from the development system 
file’s last-modified date.) Because of this, we normally download a new program version only once 
from the development system via the TFTP protocol. To install the program in another node, we 
use the file copy mechanism via PAGEDNLD. This practice preserves the version date.

User level
When a file is transferred into a node, it replaces any file of the same name that already exists 

in that node’s file system; the previous version is freed and the new one is allocated. In the case 
that the file is a local application program file, and if that LA is currently active, an automatic and 
orderly switch to the the new version takes place. A termination call is made to the active LA, the 
old dynamic memory copy is released, the new version is allocated and copied into dynamic 
memory for execution and called to initialize itself. In the rare case that this automatic switching is 
not desired, merely disable the current LA before downloading the new version.

For a page application that is updated, however, no such automatic switching takes place. In the 
case that the previous version of the PA is active, one must instead recall the page application to 
activate the new version just downloaded.

Note that only 68K program files can reside in a 68K node file system. Similarly, only PowerPC 
program files can reside in a PowerPC file system. This is necessary because two versions of the 
same program often exist using the same filename, since they provide the same functionality. Data 
files may reside in either type of node.

Diagnostics
A special page application PAGEVERS allows comparing versions of files in a “target” node 

with a “reference” node. For each target node file that differs from that in the reference node, it 
indicates which is newer. It also indicates which files in the target node are not in the reference 
node. It merely compares the CODES table contents of both nodes. Most commonly, the reference 
node is a library node. Node0508 is used for 68K files, and node0619 is used for PowerPC files.

A diagnostic page application PAGENVOL can be used to examine the health of the file system area. 
It looks at each block in the area and checks to see whether all allocated blocks are pointed to by 
CODES table entries. It also checks that all other blocks are part of the free space linked list of 
blocks. If it sees a block that is “unknown,” it shows the 8-byte header field of that block. One 
could see this effect if the program is run after a CODES table entry is obliterated. It will likely show 
that the first 8 bytes are a size longword followed by the constant 0x0000000F.

Previous notes
These notes provide additional documentation about nonvolatile memory usage:

Title #pages Date
Downloading Programs 3 Aug 28, 1990
TFTP Implementation 2 May 17, 1994
Nonvolatile Memory Analysis 2 Oct 14, 1994
Program Copying 1 Sep 14, 1998
LocAppl Flow Diagram 2 Feb 17, 2000
Program Versions 4 Jan 26, 2001
Local Application Parameters 2 Jul 28, 2003

Nonvolatile File System p. 3


