
Network Layer Routines
Calling Sequences

Aug 3, 1989

Low Level Interface Routines

Function NetCnct(taskName: LongInt;
queueId: LongInt;
eventMask: Integer;
VAR taskId: Integer): Integer;

Connect this task to the network using the 4–byte taskName as the name of the task as
known by the network (not necessarily the same task name known to the operating system).
The second parameter is the message queue id. Messages received from the network which
use the Acnet header SAP and which are destined for the task referred to by taskName are
passed to the queueId message exchange. The third parameter is an optional event mask to
be used to signal a task when a message is placed in the queue. The fourth parameter is the
returned task id to be used in other network calls.

Function NetQueue(taskId: Integer;
VAR msgBlk: Integer;
VAR xmitStat: Integer): Integer;

Queue the message in msgBlk to the network. This call is always asynchronous. A
pointer to msgBlk will be queued to the network output queue. The xmitStat parameter is
initialized to pending on return, and it will be set to indicate completion when the frame
containing the message has been transmitted.

Function NetSend: Integer;

Queued messages are not released to the network right away in order to allow frames
to be built from multiple messages. This call flushes all queued messages to the network,
insuring that they will be transmitted promptly.

Function NetCheck(taskId: Integer;
timeOut: LongInt;
VAR msgRef: MsgRefType): Integer;

Check the message queue used by the given task for a message block and return a
reference to it if present. If not present, wait with given time–out in 100 Hz ticks.

Function NetRecv(VAR msgRef: MsgRefType;
VAR msg: MsgType;
maxSize: Integer): Integer;

Copy the received message from the circular buffer to the caller’s msg buffer with
length maxSize using the msgRef reference block, and decrement the frame’s message count
word to indicate that the copy of the message in the circular buffer is no longer needed.

Function NetDcnt(taskId: Integer): Integer;

Disconnect task from the network. Any request messages received directed to the
given taskId will be ignored, and a reply will be sent to indicate no reply task available.

Message Block Structure

srcLanNodedestLanNode

…

…
messageLng

blkSize destOff=$18 msgSize-2 blkType=900

hdrOff hdrLng fmtOff fmtLng08

msgOff msgLng xtraOff xtraLng10

Ptr to xmitStat18

20

msgType replyStatus28

destTaskName srcTaskId messageId30

fmtSize fmtSpec fmtSpec38

message

xtraData

dest
node

The blkSize is the length of the entire memory block. The hdrOff, hdrLng, fmtOff, fmtLng,
msgOff, msgLng, xtraOff, xtraLng indicate the four components of a network message
under Acnet—the Acnet header, the format block, the message itself and an extra component.
The entire message is composed of the header block followed by the format block followed
by the message block followed by the extra block. These four components are collected
together into the frame buffer by NetXmit.

The user need only specify parts of the Acnet header and the four component offsets and
lengths. If an offset is negative, then a pointer to the data is expected at –offset bytes from the
start of the block. In this way, the entire message need not be put into a single block. The
destOff, msgSize–2, blkType, destNode and xmitStat are built by NetQueue. In the case of
a request, the srcLanNode and srcTaskId words are also filled in. The component data (or
pointers to it) may be placed anywhere in the structure beginning at offset 0x28. Any of the
components may be missing, in which case the associated component length is zero.

The msgRef block has the following form, where offsets are referenced to the message ptr.

0

msgCntOff�msgSize
sourceOff destOff

ptr to message
—

0

Network Layer Routines p. 2

Application Program Interface Routines

In order to present a simple view of the Network Layer to a Pascal application
program, the following routines are provided which operate as a layer above the Network
Layer. An application program does not conveniently allocate dynamic memory or create
message queues. The following four routines invoke the “real” Network Layer interface
routines described above to implement a kinder, gentler application interface.

Function NetOpen(netName: Longint): Integer;

If a queue by netName does not exist, create one with 100 entries and in fifo order with
unrestricted access. Then invoke NetCnct to register the queue to the network using the same
name for a taskName. (If the netName is already registered, NetCnct will invoke NetDcnt
automatically to free it.) The returned taskId is not needed by these four routines, as each
uses the netName to refer to the NETCT entry (and the message queue) of interest. The entry is
marked with an event number to cause the application task to be promptly invoked upon
response to a network message directed to its queue.

Function NetWrite(netName: Longint;
VAR msg: MsgType;
VAR xmitStat: Integer): Integer;

Find entry in NETCT to get srcTaskId to use in case message is a request. Allocate message
block from dynamic memory and put a pointer to msg into it. There is only one component in
this case, the Acnet header being the first nine words. The user must prepare part of the
header to designate the message type, destination node and task name, message id and size,
in the case of a request or a USM. For a reply, the user includes the status word; the rest of
the header is mostly derived from that received with the request. Invoke NetQueue to pass
the message block to the network output pointer queue. Then call NetSend to flush the queue
to the network. The call is always asynchronous. The xmitStat variable is likely to indicate
“operation pending” upon return. The application may likely exit after this anyway. The
xmitStat variable can be checked later.

Function NetRead(netName: Longint;
VAR msg: MsgType;
maxSize: Integer): Integer;

Find entry in NETCT to get taskId to use in call to NetCheck. The application program calls
this routine in response to its being called with the network event indicated. This happens
upon arrival of a message placed into the associated message queue. NetCheck is called with
no time–out to collect the waiting msgRef block that points to the message as it resides in the
frame buffer. Check the received size against the maxSize argument to insure that the user’s
buffer is large enough. Then copy the received message from the frame buffer into the user’s
buffer by calling NetRecv.

Function NetClose(netName: Longint): Integer;

Find entry in NETCT to get queue id to use to delete message queue. Then call NetDcnt to free
NETCT table entry.

This implementation of application interface routines doesn’t allow for combining multiple
messages into network frames. This was done to simplify the interface for the user. If
significant use is made of the application interface, this feature may be added.

Network Layer Routines p. 3

Error return codes

0 No error. –10 spare
–1 NETCT table doesn’t exist. –11 Bad msgType in Acnet hdr.
–2 Invalid taskId. –12 Message queue empty.
–3 Task not connected. –13 Timeout from NetRecv.
–4 Invalid queueId. –14 Message queue deleted.
–5 NETCT table full. –15 Queue access violation.
–6 Bad size in msgRef block. –16 Bad total message size.
–7 OUTPQ full. –17 No network board.
–8 Can’t create message queue.
–9 Can’t allocate message block.

Network Layer Routines p. 4

