
Network Layer
Ping Pong test program

Aug 2, 1989

The Network Layer software supports task-to-task communication across the network. A set 
of four Pascal-callable interface routines are provided that invoke the Network Layer 
routines to provide network service to application programs in the VME Local Stations. The 
PingPong application program is a demonstration of the use of these routines.

Upon program initialization PingPong connects to the network using the two names PING 
and PONG. The PING “task” accepts operator input to send a request to PONG. The PONG “task” 
will respond to any requests that are sent to it. The same application is simultaneously a PING 
task and a PONG task. It can be loaded on two different nodes for the purpose. This allows 
exercising sending requests and receiving replies between two nodes. One can be PING and 
the other will be PONG. Or, they can be both simultaneously. 

In order to provide for some example “work” to be done by the replying task, the request is 
interpreted as a request for memory data that should be returned in response to the request. 
Both the number of bytes and the starting memory address are specified in the last three 
words of the request message. With the 9-word Acnet header, the size of the request message 
is therefore 24 bytes. The size of the response message to such a request is 20 plus the number 
of bytes requested, since the first word of the response (following the Acnet header) is a 
status word with the value 'OK' or 'BE' as an indication of whether a bus error was 
encountered when accessing the requested memory. The format of the display showing the 
PING activity is as follows:

J NET PING PONG   08/01/89 1057
PING   OPEN     0   *CLOSE
      *WRITE    0    0   N<9000>
   0002 0000 7304 0804 504F4E47
   0000 1234 0018 0104 00102008
       READ     0 T=  14 N=9000
   0004 0000 7304 0804 504F4E47
   0003 1234 0118 "OK" 8908 0109
PONG   OPEN     0   *CLOSE
       READ              N=   0

       WRITE             N=   0

The upper part of the display shows the PING message traffic. Note the fields of the Acnet 
header. The 0x0002 signifies a request, the destination node is 0x0473, the destination task 
name is 'PONG', the message id is 0x1234, and the message size is 24 bytes. The source node 
and the source task id for a request message are filled in by the Network Layer software. The 
three additional words of the request message following the header specify that PONG should 
reply with 260 bytes of memory data beginning at address 0x00102008. This request was 
executed 9000 times.

The next section of the display shows the response that was received from the PONG task in 
node 0x0473. The Acnet header is mostly identical in the response message, indicated by the 
first word value of 0x0004. The replier had to specify the message size and a status word, but 
the other fields are left the same as were received in the request. Note that the source task id 
(actually the destination task id for a reply) has the value 0x03. That value was also part of 
the received request and serves to route the reply back to the requesting task, PING in this 



case. The time for the response is shown as 14 counts in units of 0.5 msec, or 7 ms. This time 
is measured from just before PING’s call to NetWrite until just after PING’s call to NetRead in 
response to the application’s invocation due to the Network event that results from the 
arrival of the response message. There were 9000 responses received.

A example of the display from the perspective of PONG is as follows:

J NET PING PONG   08/01/89 1125
PING   OPEN     0   *CLOSE
      *WRITE             N<9000>
   0002 0000 7304 0804 504F4E47
   0000 1234 0018 0104 00102008
       READ       T=     N=   0

PONG   OPEN     0   *CLOSE
       READ     0        N= 535
   0002 0000 0804 7304 504F4E47
   0005 5678 0018 0004 0010200C
       WRITE    0        N= 535
   0004 0000 0804 7304 504F4E47
   0005 5678 0018 "OK" 25310024

The lower part of the display shows the PONG activity. (The upper part merely shows the 
example request message last used that is saved across invocations of the page.) Note the 
fields of the Acnet header sent by PING from node 0x0473 this time. The value 0x5678 was 
used for the message id in this case and the source task id 0x05 was filled in by node0473’s 
Network Layer software. Four bytes of data were requested from location 0x10200C in node 
0x0408. The reply message sent by PONG is also shown, The status word preceding the four 
returned memory data bytes is displayed here in Ascii and indicates that there was no bus 
error accessing memory. A total of 535 requests were replied to.

The two lines of the display which show the NetOpen status return allow invoking NetClose 
to test the status return from that call. One normally won’t do this, as the tasks will no longer 
be connected to the network. Leaving the page also closes the network connection for both 
PING and PONG.

Overview of Network processing
It may be helpful to understand some of what is going on behind the scenes while 

PingPong is “doing its thing.” PING sends a request message by making a call to NetWrite, 
specifying the message that it wants to send, including the Acnet header in the first 9 words. 
It also provides a variable which will be set later to indicate the success of the transmission to 
the network. NetWrite actually allocates a dynamic memory “message block” to house the 
some control information used by the network. A pointer to the message is put into the 
message block, and a pointer to the block is passed to NetQueue, which in turn invokes 
OUTPQX to place the pointer onto the Output Pointer Queue OUTPQ. NetWrite then calls 
NetSend (which calls NetXmit) to build the network frame in a circular frame buffer and pass 
it to the token ring chipset. At this point NetWrite returns to the user application.

Meanwhile, the chipset uses DMA to transfer the frame buffer into its own high speed 
memory which is able to keep up with the 4 Mbps token ring bandwidth. When it obtains the 
token from the ring, it transmits the frame. When the frame has circulated around the ring, 
the transmitting chipset strips it from the ring and emits a new token. At this point the 
success of the transmission is known, and the chipset generates a transmit interrupt. The 

Network Layer p. 2



network transmit interrupt routine (in module NetInt) records a status code in the user’s 
variable that was passed earlier via the call to NetWrite. The way PING is written, no 
particular notice of this value is made except at the usual 15 Hz invocations of the 
application, when the screen is updated with the current value of the variable if it changed.

On the PONG side of the equation, the arrival of the network message to the chipset results in 
a DMA transfer into a circular frame receive buffer and an interrupt being delivered to the 
system.  The receive interrupt routine uses the destination SAP to obtain a message queue id 
from the NETCT table of connected SAPs. In this case, it sends a frame reference message 
containing a pointer to the frame contents to the ANet message queue. Writing a message into 
this queue wakes up the ANet Task.

The ANet task analyzes the Acnet header and looks up the destination task name in the 
NETCT Table. It sends a message reference to the associated message queue (whose name is 
PONG in this case). Another field in the NETCT entry indicates that it should also send event #4 
to the application task to signal it that a network event has occurred. (This was arranged 
automatically by PONG’s NetOpen call.) When the application task is invoked with the 
Network event, it calls NetRead (as both PING and PONG, since the Network event may signal 
the arrival of either a request or a response or both). In this case, a message is received by 
PONG’s call to NetRead, and the request, including the Acnet header, is copied into the user’s 
buffer.

PONG interprets the request and calls its own MemData routine to collect the requested 
memory data into a reply buffer. The Acnet header is copied to the start of that same buffer, 
the first word is set to denote a reply message, and the last word of the header is set to 
indicate the total message size. NetWrite is called to deliver the response. As before, 
NetWrite allocates a message block and puts a pointer to the user’s message into it. Then 
NetQueue and NetSend are called in turn to “get it out the door.” NetSend builds the 
network frame in the circular frame transmit buffer and hands it off to the chipset. The 
chipset DMA’s the frame into its own fast memory and transmits the frame to the token ring. 

Back on the PING side, the response frame is received, and the receive interrupt passes a 
reference to it to the ANet task, which in turn passes a reference to the message to the 
application and signals the application task via event #4. The application is invoked and 
finds a message for PING. The call to NetRead results in the response message being copied 
from the frame buffer into the user’s buffer. The cycle is complete. If the count is not yet 
exhausted, then NetWrite is called to send the request message again to PONG.

The Network Layer implementation, as is seen from the above discussion, does copy 
messages in memory. The received data is copied from the circular receive frame buffer into 
the user’s buffer. The transmitted data is copied from the user’s buffer into the circular 
transmit frame buffer.

Statistics have been collected on the performance of the Ping Pong test vehicle. They are 
listed in the following table:

Cache off
Requester Requester Requester Replier

#bytes Tx to Rx Rx to Tx Appl Prog Tx delay Rep rate Frames/sec KBytes/sec
4 4.5 2.0 4.3 1.3 6.5 154 1

256 5.0 2.1 4.3 2.0 7.2 139 36
512 5.5 2.1 4.4 3.5 7.7 130 66

Network Layer p. 3



1024 8.4 2.2 4.6 5.0 10.6 94 97
2048 14.0 2.5 5.0 9.0 16.6 60 123
3072 19.5 2.8 5.2 13.0 22.5 44 137
4096 25.5 3.0 5.4 16.5 28.5 35 144

Cache on
Requester Requester Requester Replier

#bytes Tx to Rx Rx to Tx Appl Prog Tx delay Rep rate Frames/sec KBytes/sec
4 2.7 2.0 3.2 1.3 4.8 208 1

256 3.6 2.0 3.2 2.0 5.7 175 45
512 5.0 2.0 3.2 3.5 7.0 143 73

1024 7.4 2.2 3.3 5.0 9.6 104 107
2048 12.0 2.5 3.6 9.0 14.5 69 141
3072 17.0 3.7 3.7 13.0 19.5 51 158
4096 21.5 3.0 4.0 16.5 24.5 41 167

The reference to “Cache on” refers to the 68020 instruction cache in both nodes. The “Tx to Rx” 
refers to the time from the Tx interrupt of the request message to the Rx interrupt of the 
response message. The “Rx to Tx” refers to the time from the Rx interrupt of a response to the 
Tx interrupt of the next request. The application program timing is the timing of the PING 
application. The “Replier Tx Delay” is the time from the replier’s NetXmit routine handing the 
frame off to the chipset to the time of the Tx interrupt generated by the chipset when the 
response message has been completely transmitted around the ring. The “Rep Rate” is the time 
from one request to the next and should equal the sum of “Tx to Rx” and “Rx to Tx” times. It 
also corresponds to the measured time to make the request and receive the reply from the 
application’s viewpoint. The last two columns are derived from the measured data. The 
“Frames/sec” only counts the response frames, not the request frames. The “KBytes/sec” only 
counts the requested memory data bytes, not the total bytes in the frame.

Network Layer p. 4


