
GETS32 Protocol Notes
Overview document ponderings

Wed, Oct 25, 2006

The GETS32 protocol is an enhanced replacement for RETDAT that is used by the Java Acnet 
consoles to request data from the appropriate DAEs. The DAEs, in turn, currently convert 
these request messages into the RETDAT protocol for transmission to front ends that do not 
support the more extensive GETS32 protocol. But in order to support all the new features 
allowed by GETS32, each front end must support it as well, so that the DAEs can merely pass 
on the original GETS32 request to the front ends. This note is meant to document reactions 
and interpretations gleaned from the GETS32 overview document that was written by Kevin 
Cahill dated October 8, 2003.

The stated new features include 32-bit length and offset specifications for each device, time 
stamps for resolving correlated data, and an expanded data event specification string. The 32-
bit parameters are unlikely to be of much interest for our front ends. The correlated data 
solution, however, can allow for correlation between different replies across front ends, 
which is not easily obtainable with the current protocol and console data pool design.

The data event specification string is fairly general. It allows specifying, for periodic replies, 
whether an immediate reply is to be returned. (Right now, our front end support always 
includes an immediate reply, except for clock event-based requests.) The clock event case 
allows for specifying a delay after the clock event when the data is to be sampled. In our 15 
Hz front ends, this has been handled for Booster reset clock events by assuming that the data 
sought is that to be found in the data pool that was produced during the 15 Hz cycle 
following the 0x0F event, which occurs about 16 ms prior to the Booster reset event. The new 
specification also allows for a “hard,” “soft,” or “either” type of event, the definitions of 
which are as yet unclear.

Time stamps
The time stamps included in the GETS32 reply message header are of three types, each 

of which is given in units of milliseconds since the start of the year 1970. This number 
currently occupies 40 bits, so that each time stamp comfortably fits within a 64-bit field. The 
cycle time stamp marks the occurrence of the 0x0F clock event that precedes the data 
collection event. The collection time stamp should specify the collection event time, or the 
time at which the data is sampled. Since all devices in a request share the same set of time 
stamps in the reply message header, this time stamp may be treated as a rough average. The 
reply time stamp is to mark the time at which the reply message is ready for delivery to the 
network. These three time stamps should occur in the order of cycle, collection, reply.

Return to the cycle time stamp. In order that all front ends have the same value for this time 
stamp, on each and every 15 Hz cycle, each front end should listen to the multicast clock 
event message that is sent following every 0x0F clock event. Within that message is to be 
found the time values from which one can derive the required cycle time stamp; thus, every 
front end will use the same value. It may be processed as a kind of a unique identifier for 
each 15 Hz accelerator cycle. It should not require much time to interpret this multicast 
message every cycle, but it will place a constant load on network processing that one can 
view via the Page F network diagnostics, sometimes referred to as a “poor man’s Sniffer.”

Data Events
The data event string specification has four types, referred to as immediate, periodic, 

event, or state transition. The string for each type allows for fields separated by commas. The 
immediate case is merely the string “i”.



The periodic event string is something like “p,1000,true”. The second field is the period 
expressed in milliseconds. The last field is a boolean string “true” or “false”, which 
specifies whether an immediate reply is to be returned. The 15 Hz period is specified as 
“p,66,true”, for example. We may round off this number to a whole number of cycles.

The clock event string includes fields for the event number in hexadecimal, the character “h”, 
“s”, or “e” to mean hard/soft/either, and a delay after an occurrence of the event. An 
example might be “e,1D,h,300”. If we round off the delay to derive an integral number of 
cycles, this can cover anything in the data pool. One might consider for some cases whether 
we should try to sample readings more accurately in the KHz (or 10KHz) circular buffer.

The state event string includes the name of a state device, a decimal compare value, a delay, 
and a compare operator string. The latter may be “*” for any, “=” for equal, or “!=” for not 
equal. An example might be “s,V:CLDRST,9,1000,=”, which means a delay of one second 
after the collider state device reading announces (“=”) the inject pbars (“9”) state. It is 
possible that a decimal device index value can be used in place of a state device name. It is 
not yet clear how we can implement this feature.

Server node support
We support the use of a server node for RETDAT, so we should also support it for 

GETS32. This requires examination of the SSDNs that are part of either protocol to discover 
the actual source node for the device whose data is requested. Following such examination, a 
decision is made whether server support is required for the current request. If it is, then the 
entire request is to be sent to a multicast destination so that all nodes can see the same 
request message. Not only that, preparation must be made for receiving replies from each 
contributing node and suitably sprinkling its reply data into the composite reply buffer.

We have used server nodes as a concentrator so that reply data stemming from multiple 
nodes can be grouped together, with an eye toward delivering correlated data. With the new 
GETS32 support, the time stamps are designed to solve the correlated data problem. Still, the 
server node provides diagnostics and also reissues requests to contributing nodes that appear 
to have dropped out. The latter facility serves to remind a node, following a reset, of the 
active data requests of which it is a part.

Assuming that we support a server node, how can we deal with the time stamps? Consider 
first how the time stamps are generated for the contributing nodes. Early in a cycle, each 
node should capture the cycle time stamp from the multicast message that was received 
about 16 ms before the current Booster reset clock event. It should also capture the collection 
time stamp that is appropriate for the current cycle, which means the time of Data Access 
Table processing, when the data pool is updated. Finally, when it has prepared a reply 
message for delivery to the network, it should include the time stamp that corresponds to 
“right now.” To facilitate that, the local microsecond counter can be captured at the same 
time that corresponds to the previously captured collection time stamp. One can then easily 
compute a time stamp for any time thereafter during the present cycle. Take the elapsed 
microseconds, divide by 1000, and add the quotient to the collection time stamp.

Now return to the server node and its setting of time stamps for the composite reply 
message. It can copy the first two time stamps (cycle and collection) from the last received 
contributing reply message header. For the reply time stamp, it can deal with it the same way 
that a contributing node does. The reply time stamp should mark the time of delivery of the 
composite reply. It can easily be more than one cycle after the cycle time stamp, especially for 

GETS32 Protocol Notes p. 2



nodes whose “µP Start” time is late, such as the 40 ms used for a Booster node. This is 
because the reply time for server requests is scheduled at about 40 ms after µP Start.

Note that the above scheme for server node time stamps works well for one-shots.

Sans multicast event message
What if the multicast message is not forthcoming? One can consider using a value for 

the cycle time stamp that is derived from the GMT0C time maintained by each front end that 
was developed for support of MiniBooNE. This result may not precisely match that which 
would have come from the multicast message, but it will be close. The format of GMT0C is a 
32-bit count of seconds since 1900 and a 32-bit count of microseconds within the current 
second. To build a cycle time stamp for this, first work out the GMT value for the latest 0F 
event, subtract an offset equivalent to 70 years of seconds, multiply that result by 1000, and to 
that product, add the number of microseconds divided by 1000.

If the multicast event message contained such an accurate value for calendar time of the 0x0F 
event that prompted it, it could be possible for a node to create its own such time stamp, 
assuming that the client side processing allowed for at least a 1 ms deviation in the value 
compared with that included in the multicast event message header. Thus, a node that cannot 
receive the multicast message would still be able to support the GETS32 protocol.

Support via LA
It may be useful to support the GETS32 protocol via a local application. The FTPMAN 

protocol is currently supported by LOOPFTPM and may be used as a model. But there are 
complexities that must be handled by the LA, including waveform access, 7.5 Hz special 
handling, and data averaging. The name of the LA may be GS32. Diagnostics may include a 
GS32LOG data stream to log the arrival of requests. The request memory block type used to 
support each such active requests may be 0x0072.

Multicast events
The multicast event message cannot be used for bringing event information to our 

front ends, because the event information comes too late. Consider a Linac node that starts its 
cycle at 3 ms after the Booster reset event. The most recent multicast message would have 
been received about 20 ms earlier, at which time the reset event was yet to be seen. And it 
will be about 50 ms after the Booster reset event (47 ms after the start of the cycle) before the 
multicast message arrives that carries the news about the Booster reset event that started this 
cycle. This news will thus not arrive in time to be useful in determining whether a reply 
message for an event-based request is due. We therefore need hardware clock decoding in 
each front end. Perhaps this means that we cannot support “soft” clock events as defined in 
the GETS32 protocol.

Multicast event message synchronization
Examine the timing of key events more carefully. The multicast message is sent out 

following the 15 Hz clock event 0x0F. It is of course received by all nodes shortly thereafter, 
so that it arrives well ahead of Booster reset event time. The ACLK local application current 
runs in node06C3 to receive this message to capture the low 16 bits of the cycle number 
(message counter) for use as a common cycle counter time stamp. Every 256 cycles, or about 
17 seconds, it shares this counter value with all nodes by targeting multicast node 0x09F9. 
This sharing serves to insure that all front ends have the same cycle counter for use during 
the following 15 Hz cycle, beginning with their own µP Start timer interrupt. This number is 
currently used for the 7.5 Hz data replies that support reliable 15 Hz waveform collection, 
originally done for Booster BLMs. The other use is for reading 15 Hz readings at rates of 1 

GETS32 Protocol Notes p. 3



Hz, say, where an array of readings is returned, along with the accompanying cycle counter.

Assume we have something like ACLK installed in each front end node, but with the target 
node# parameter set to zero. Then the present code will set the cycle counter only locally. In 
addition, we could have ACLK capture something else from the header that would provide the 
proper time stamps for the 0x0F event as used in the GETS32 protocol. This would be saved 
in a low memory global, perhaps, so it can be used by code executing in the following cycle. 

At the start of a new cycle, maybe even when GS32 executes its cycle activity, it can watch for 
a new cycle time stamp cyclTSR that was captured by ACLK. It can copy this into cyclTS, 
accepting it as the reference cycle time stamp for the current cycle. Also, it can measure how 
long it has been, in microseconds, since the last 0x0F event, referencing the 0x0F entry in the 
Event Times table, which can be captured as cyclMic. Convert the elapsed microseconds to 
milliseconds and add cyclTS to form the collection time stamp collTS. Use the cyclTS and 
cyclMic again later for building any reply time stamps for reply messages that become due 
during this cycle. Write a function called GS32Now that use cyclTS and cyclMic along with 
the current microsecond counter reading (the same one that is used in the Event Times table) 
to produce an 8-byte result in the format required by the GS32 protocol. This function can be 
used to produce both the collTS and any later replTS needed. It may be useful to keep 
cyclTS as a low memory global to facilitate comparing values across front ends. The rest 
may be simply maintained in the static memory structure maintained by GS32.

But what if GS32 sees no change in cyclTSR, implying that ACLK did not receive a multicast 
event message? We might manufacture a new cyclTS by deriving a GMT(0F) from GMT0C. 
Then convert that into the milliseconds-since-1970 format. The other time stamps can again 
be based upon this “best effort” result.

When a new server request message is processed, and the reply message block is initialized, 
copy the recent values of cyclTS and collTS into the header. This would suffice for the case 
in which no contributing node replies to give us those two time stamps to copy into the 
composite reply message header.

So much for planning. See the note, GETS32 Protocol Support, for the implementation.

GETS32 Protocol Notes p. 4


