
GETS32 Protocol Support
Methodology adopted

Mon, Oct 30, 2006

The GETS32 protocol is analyzed and discussed in a previous note GETS32 Protocol Notes. 
This note describes how the front end support was built for that protocol. 

Rather than developing a local application to handle GETS32/SETS32 protocols, such support 
was added to that which already exists for RETDAT/SETDAT, so that both protocol sets are 
supported via the ACReq task. All the old support must also apply to the new protocols; the 
RETDAT/SETDAT support is not going away. 

Implementation
New ACReq task stack variables were defined. New fields were added to the request 

block header, although its overall layout remains unchanged. The reply message block now 
includes space for the new reply header. New global low memory variables were defined to 
hold the cycle time stamp and related variables to aid in constructing the time stamps that are 
specified for GETS32 replies. The logic allows for a new version of ACLK to be written to 
supply the correct cycle time stamp as obtained from the multicast event message. In case the 
cycle time stamp has not been updated, however, the code attempts to create one itself, 
building on the previous GMT0C support that provides calendar time for any clock event 
accurate to within 100 µs, say.

Details of GETS32 support
Many changes, both large and small, were made in the ACReq task code itself, where 

RETDAT/SETDAT support is found. Special new functions are found in the module ScanDES, 
named for the code that scans the data event string used in GETS32 requests, reducing it to a 
more manageable data structure. New low memory variables were defined as follows:

Name Size Meaning
CYCLETSR 8 GETS32 cycle time stamp reference
CYCLETS 8 GETS32 cycle time stamp for current cycle
CYCLEMIC 4 0x0F event time, from cpu µs counter
COLLTSO 4 time from 0x0F event until GS32TS is called each cycle, in µs

If the ACLK local application is running, it extracts a cycle time stamp, during its processing of 
the multicast event message, and deposits it into CYCLETSR, where it is seen by the code in 
GS32TS that is called by the Update task each 15 Hz cycle. Whether CYCLETSR is updated or 
not, GS32TS leaves the operational cycle time stamp in CYCLETS for use by GETS32 request 
handling. The CYCLEMIC variable holds a copy of the cpu µs counter captured for the 0x0F 
event, used for event time stamping. It is used by the function GS32NOW to derive a current 
time stamp. The COLLTSO variable is used to help derive a collection time stamp for periodic 
request cases. 

New functions in the ScanDES module:

Name Meaning
CopyDES Copy data event string from request message into buffer, byte swapped.
ScanN Convert numeric string into 4-byte long integer value
ConvCyc Convert from msec units into operating cycles units
ScanDES Scan data event string, build DESVARS 8-byte structure
ScanFTD Build DESVARS structure from a RETDAT FTD.
DES2FTD Build analogous FTD from DESVARS structure.



ReplyDue Given the request block, determine whether a reply is due on this cycle.
GS32TS Update the low memory fields relating to the cycle time stamp.
GS32NOW Get the GMT time stamp for “now”.
GS32FMT Given a GMT time, compute the time stamp used for GETS32 replies.
EVTGMT Given a clock event, return the GMT time stamp.

The functions ScanN and ConvCyc are only used by ScanDES. The GS32TS function is called 
by the Update task just after the call to GMTTIME. (This is the only code change for GETS32 
support outside of the ACReq module and the functions it calls in the ScanDES module.)

DESVARS structure
The data event string included in a GETS32 request message header is interpreted by 

ScanDES and converted into a structure consisting of two 32-bit long words. This structure is 
found in the request block (type #12) that supports both RETDAT and GETS32. The ACReq code 
was modified so that it refers to this structure rather than the original FTD. To that end, 
ScanFTD, during RETDAT request initialization, forms the required structure based upon the 
given FTD. This is analogous to what ScanDES does during GETS32 request initialization. The 
ReplyDue function is called by ACUpdChk to determine, for either protocol, whether a reply is 
due on the current cycle. At points in the code where it is necessary to distinguish which 
protocol applies to a given request, the sign bit of the first long word is set for GETS32.

The first long word field is DESTYPD. It has flags in the uppermost 4 bits, a type# in the next 4 
bits, and a delay in the low 24 bits. The three type#s currently supported are immediate (0), 
periodic (1), and clock event (2). For the periodic case, the 24 bit delay is in units of operating 
cycles, such as 15 Hz. For the clock event case, the 24 bit delay is in units of ms. The only flag 
bit used is set when a periodic request specifies that an immedate reply is to be returned. (For 
RETDAT, an immediate reply for a periodic request is always returned.) Although other flag 
bits are used to mark the hard/soft/either option in an event request, they are so far ignored.

The second long word is DESCNTR. It contains the clock event# in the upper byte, if it applies, 
and a “counter” in the low 24 bits. For the periodic case, there is no event#; the low 24 bits are 
used to hold a cycle countdown to measure the specified period between replies. For the 
clock event case, the event# is maintained in the hi byte, and the low 24 bits are zero until the 
specified clock event has been seen, then set to the specified delay in units of µs/256, or 
roughly, quarter milliseconds. (The determination of when the specified delay has been 
reached after the event is done in µs units, which is why this is useful.) Once the delay has 
been reached, the low 24 bits are cleared to enable waiting for the next occurrence of the 
event. If the specified delay is long enough, so that another occurrence of the same event 
takes place before the delay is reached, no reply will ensue. The test is always based on 
whether the current time exceeds the most recent event time by the specified delay.

Time stamps
The time stamps defined for use in the reply header for the GETS32 protocol are 64-bit 

integer milliseconds since the start of the year 1970. Conforming to the endian-ness used by 
GETS32 clients, this 4-word integer must be returned in reverse word order. To restrict the 
prevalence of this new format within the system code, the function GS32FMT, given a GMT 
time stamp, computes the required number of milliseconds and deposits the result into the 
reply message header—the only place it is needed—in the required word order. Recall that 
the GMT time stamp consists of two 32-bit long words; the first is the number of seconds since 
the start of the year 1900, and the second is the number of µs within that second. All GMT 
times are maintained in this format internally. For the record, the number of seconds between 
1900 and 1970 is 2208988800, or 0x83AA7E80.

GETS32 Protocol Support p. 2



Three time stamps are included in a GETS32 reply message header. The first is the “cycle” 
time stamp that gives the time of the most recent 0x0F clock event, occurring about one 60 Hz 
cycle ahead of the Booster reset clock event. This time stamp is kept in low memory as 
CYCLETS and is updated by the call to GS32TS.

The second time stamp is the “collection” time stamp. It normally refers to the time that the 
data is sampled, which in the present implementation, for all but event-based requests, marks 
the time that the Update task begins updating the local data pool. For event-based requests, 
however, this time stamp is built from the event plus delay time, which should occur within 
one 15 Hz cycle (66 ms) before the final time stamp, which is the reply time stamp, denoting 
when the reply message is built for queuing to the network. Note that this special version of 
the collection time stamp may not be bracketed between the other two time stamps, as they 
are found for the periodic case, say. In particular, it will be found outside this window if the 
event plus delay is reached before the most recent 0x0F clock event.

The third time stamp is the “reply” time stamp that merely marks the time when the reply 
message is ready to be sent to the requesting node. It may have some diagnostic value.

Server node support
Server node support means that a request message received that calls for data from 

more than just the receiving node will require that node to function as a “server node,” which 
means it will seek to gather all the requested data itself, from however many contributing 
nodes, and after receiving the replies from each, it will return a composite reply to the 
requesting node. Since such support is in place for RETDAT, it must also work for GETS32. 
This is yet another reason why it was decided to add GETS32 protocol support to the existing 
code that supports RETDAT.

When the replies come back to the server node, from each of the various contributing nodes, 
the reply data is sprinkled into the appropriate parts of the composite reply buffer. As for the 
time stamps, the first two time stamps are copied from every contributing node reply header. 
This means that the first two of the final composite time stamps are the same as the last-
received contributing node reply. The reply time stamp is assigned by the server node when 
it is ready to deliver the composite reply to the original requesting node.

In the case that a contributing node stops returning replies, the server node will remind it, 
every two seconds, what data it should be replying to any active request. If that node had 
rebooted, say, then it will “rejoin the fray” promptly after it comes back up.

Testing
Kevin Cahill provided valuable help in testing this new protocol support. Once it was 

working to return reply messages to simple requests, we examined the time stamps for 
accuracy. The protocol definition asked for units of milliseconds since 1970, as stated earlier. 
The front end systems already developed support for GMT time several years ago, so that 
support was used as a basis to develop the GETS32 times. (This may be replaced by nodes 
that listen to the multicast events message, once that protocol includes a properly-formatted 
0x0F event time stamp.) Most clock events are synchronized to accelerator 15 Hz operation, 
which is synchronized to the 60 Hz power line frequency. But clock event 0x8F occurs on 
calendar seconds. By asking for a request specfying the 0x8F event, the collection time stamp 
should reflect the time of that event, which should fall on exact seconds. After bugs were 
found and removed, it did. Milliseconds expressed in decimal ended in “000”. For a request 
specifying the 0x8F event plus 500 ms delay, the time stamp ended in “500”, as expected.

GETS32 Protocol Support p. 3


