
CODES Table Search
System optimization

Tue, May 21, 2002

This note describes a simple scheme that has been implemented to improve the performance 
the majority of CODES table searches. The idea behind the scheme is to retain knowledge of 
the result of a search, so that when the same “file name” is sought the next time, the 
knowledge of where it was found the last time can be used to full advantage.

Searches are made of the CODES table for several different purposes. A very common 
purpose is to lookup the execution address for a given file so that its code can be invoked. For 
example, during Data Access Table processing, there is one special DAT entry whose 
meaning is “execute all the local applications that are enabled.” For every enabled LA, a 
search is made to find its execution address so it can be called. This happens every 15 Hz 
cycle, of course, so there is potential for many wasted CPU cycles in searching for a match by 
file name. The number of CODES table entries used in a typical node might be 30, including 
both page and local application program files. The maximum size is normally 64 entries. 

Another reason to do a search of CODES is to find the execution address of a local 
application that supports a network protocol. A network message comes in, and the system 
must invoke the appropriate LA to handle it, assuming it is not a protocol handled by the 
system itself. 

A third reason for a search is when the Application task, which manages execution of page 
applications, must invoke that application. Only one is available at a time, and its entry point 
is retained anyway, but updating the index page requires a scan of all files in that index.

Each Local Application Table (LATBL) entry includes a 4-character local application file 
name, to which a ‘LOOP’ prefix is added to produce the 8-character file name to be found in 
CODES. Within the 32-byte LATBL entry, a byte was used to hold the execution time for that 
program (in half ms units) the last time it was initialized. But this had limited value, so the 
new scheme appropriates this byte to hold the CODES table index (entry number) where any 
search should begin. The PROGPTR code has been modified so that it accepts a pointer to such 
a byte variable, and it returns the matching CODES index via this byte variable. The effect is 
that when a search is made of a given file name, the search begins at the very entry where a 
match is most likely. It is not important if (during software updates, say) the optimal index 
should change, because the next time a search for that same file name is made, the index 
value will be updated, so that any subsequent searches will be optimized. The index is only a 
hint of where to start; the code will search all entries until a match is found.

For the case of page applications, the Application task now keeps an array of 32 bytes, one 
for each page, that it uses when it makes calls to the PROGPTR routine that in turn calls a 
search routine to find a matching CODES table entry for a given page application.

When access is made for program file data, say via Page D, there is no need to keep such 
records, as any file name at all might appear in the request. Such searches merely start at the 
beginning and scan until a match is found or until the end is reached.

While it is nice to know that useless searches are not being performed in the system code, it is 
even better for the case of the PowerPC nodes, because of the slow access to nonvolatile 
memory that holds most of the tables that need to be searched, including the CODES table.


